Emulsification of silicone oil and eye movements.

Invest Ophthalmol Vis Sci

Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.

Published: December 2011

Purpose: Emulsification is an inherent problem of silicone oil used in vitreoretinal surgery. It has been shown that silicone oil can be made more resistant to emulsification and easier to inject by adding high-molecular-weight components (5% or 10% 423-kDa polydimethylsiloxane [PDMS]) to normal 1000 mPa · s silicone oil. The authors hypothesize that this might also reduce the movement of oil within an eye.

Methods: A model eye chamber made of surface-modified poly(methyl methacrylate) was driven by a computer and a stepper motor to mimic saccadic eye movement. Seven silicone oils with different shear and extensional viscosities were tested. Two sets of eye movements were used: (amplitude 9°, angular velocity 390°/s, duration 50 ms) and (amplitude 90 °, angular velocity 360°/s, duration 300 ms). The movements were captured and analyzed by video recording.

Results: The angular velocity of an oil bubble relative to the eye chamber appears to form an exponential relationship with its shear viscosity. Depending on the thickness of the film of aqueous between the eye wall and the oil bubble, the shear rate was estimated to be between 6 and 14 × 10(4) s(-1). The addition of 10% of 423-kDa PDMS to 1000 mPa · s silicone oil significantly reduced the peak relative velocity compared with the base oil of 1000 mPa · s but not 5000 mPa · s.

Conclusions: The addition of high molecular components to a base oil increases its extensional and shear viscosity. Although the extensional viscosity affected the ease with which the oil could be injected, the results showed that it was the shear viscosity that determined the relative velocity between the oil and the wall of the vitreous cavity, and thus the propensity to emulsify.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.11-8586DOI Listing

Publication Analysis

Top Keywords

silicone oil
20
oil
12
1000 mpa
12
angular velocity
12
shear viscosity
12
eye movements
8
10% 423-kda
8
mpa silicone
8
eye chamber
8
velocity oil
8

Similar Publications

Introducing PES porous membrane to establish bionic autocrine channels: A lubricating, anti-wear antifouling coating.

Mar Pollut Bull

January 2025

Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:

As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.

View Article and Find Full Text PDF

Purpose: Formation of a full thickness macular hole (FTMH) after vitrectomy is rare. The aim of this study was to describe risk factors, clinical course, anatomical and functional prognosis of secondary FTMH development following surgery for primary rhegmatogenous retinal detachment (RRD).

Methods: Retrospective study.

View Article and Find Full Text PDF

A 42 year old Afro-Caribbean man underwent Baerveldt Glaucoma Implant (BGI) surgery for silicone oil induced glaucoma. Three months following initial surgery, the 3-0 prolene ripcord suture was removed. Anterior segment OCT demonstrates the position of the intracameral portion of the tube before and after the 3/0 prolene stent suture (PSS) removal.

View Article and Find Full Text PDF

Poly(dimethylsiloxane) (PDMS) materials have been widely researched and applied as fouling-release coatings. Incorporation of silicone oils into PDMS has been shown to improve the antifouling properties of PDMS materials. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to study PDMS materials incorporated with various silicone oils containing phenyl groups in air, water, and protein solutions.

View Article and Find Full Text PDF

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!