Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In many applications, compact concentrator lenses are used for collimating light from LEDs into high output beams. When optimizing lens designs, the LED is often approximated as a point source. At small lens-to-LED size ratios this is known to be inaccurate, but the performance compared to optimizations with more realistic models is rarely addressed. This paper examines the reliability of a point source model in compact lens design by comparing with optimisations that use a factory measured LED ray-file. The point source is shown to cause significant, unnecessary efficiency loss even at large lens sizes, while the use of a ray-file allows for a >55% reduction in the footprint area of the lens. The use of point source approximations in compact lens designs is therefore generally discouraged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.0A1190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!