The upgraded photoinjector drive laser of the free-electron laser facility FLASH at DESY Hamburg is described in this paper. This laser produces trains of 800 and 2400 ultraviolet picosecond pulses at 1 MHz and 3 MHz repetition rate in the trains, respectively. The amplifying elements of the system are Nd:YLF-rods, which are pumped by fiber-coupled semiconductor diodes. Compared to the flashlamp-pumped photocathode laser previously used at FLASH, the new diode-pumped laser features a better reliability and a significantly improved stability of its pulse parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.023770DOI Listing

Publication Analysis

Top Keywords

photoinjector drive
8
drive laser
8
laser flash
8
laser
6
flash fel
4
fel upgraded
4
upgraded photoinjector
4
laser free-electron
4
free-electron laser
4
laser facility
4

Similar Publications

This paper presents an innovative exploration of advanced configurations for enhancing the efficiency of metallic and superconducting photocathodes (MPs and SCPs) produced via pulsed laser deposition (PLD). These photocathodes are critical for driving next-generation free-electron lasers (FELs) and plasma-based accelerators, both of which demand electron sources with improved quantum efficiency (QE) and electrical properties. Our approach compares three distinct photocathode configurations, namely: conventional, hybrid, and non-conventional, focusing on recent innovations.

View Article and Find Full Text PDF

The very-high-frequency gun (VHF-Gun) is a new concept photo-injector developed and built at the Lawrence Berkeley National Laboratory (LBNL) for generating high-brightness electron beams capable of driving X-ray free electron lasers (FELs) at MHz-class repetition rates. The gun that purposely uses established and mature radiofrequency and mechanical technologies has demonstrated over the last many years the capability of reliably operating in continuous wave mode at the design accelerating fields and required vacuum and mechanical performance. The results of VHF-Gun technology demonstration were reported elsewhere [Sannibale et al.

View Article and Find Full Text PDF

The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs.

J Phys Chem A

March 2016

Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile , Avenida Vicuña Mackenna, 4860, Santiago, Chile.

The combination and balance of acceptor(A)-bridge-donor(D) architecture of molecules confer suitable attributes and/or properties to act as efficient light-harvesting and sensitizers in dye sensitized solar cells (DSSCs). An important process in a DSSC performance is the electron photoinjection (PI) mechanism which can take place either via type I (indirect), that consists in injecting from the excited state of the dye to the semiconductor, or type II (direct), where the PI is from the ground state of the dye to the semiconductor upon photoexcitation. Here, we present a computational study about the role of the donor motif in the PI mechanisms displayed from a family of 11 A-bridge-D structured dyes to a (TiO2)15 anatase cluster.

View Article and Find Full Text PDF

The upgraded photoinjector drive laser of the free-electron laser facility FLASH at DESY Hamburg is described in this paper. This laser produces trains of 800 and 2400 ultraviolet picosecond pulses at 1 MHz and 3 MHz repetition rate in the trains, respectively. The amplifying elements of the system are Nd:YLF-rods, which are pumped by fiber-coupled semiconductor diodes.

View Article and Find Full Text PDF

In the Etude d'un LaSer Accordable, electron bunches consist of trains of picosecond pulses extracted from a photocathode by a drive laser system: This system consists of a mode-locked Nd:YAG oscillator followed by a pulse compressor, an amplifier chain, and a second-harmonic-generation stage. The performance of the linac critically depends on the energy stability of this system. It is demonstrated theoretically and experimentally that the energy fluctuations of the Nd:YAG oscillator are significantly reduced by the amplifier chain, that the remaining energy fluctuations of the whole system are mainly due to amplifier pump fluctuations, and that the amplifier chain can be optimized to reduce the global energy fluctuations from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!