Ultra-small silicon waveguide coupler switch using gap-variable mechanism.

Opt Express

Department of Nanomechanics, Tohoku University, Sendai 980-8579, Japan.

Published: November 2011

Submicron-wide silicon waveguide coupler with gap variable mechanism is proposed for a compact optical waveguide switch. Two freestanding silicon waveguides are placed parallel with a submicron gap. The gap is changed by electrostatic comb-drive micro-actuators to control the coupling coefficient of the coupler. The fabricated device consisted of the silicon waveguides of 400 nm in width and 260 nm in thickness. The total size of the switch was 100 μm wide and 150 μm long. Decreasing the gap between the waveguides to 110 nm, the output intensity at drop port became a maximum while the output intensity at through port became a minimum. The extension ratio of the switch output was 17 dB for the waveguide displacement of 300 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.023658DOI Listing

Publication Analysis

Top Keywords

silicon waveguide
8
waveguide coupler
8
silicon waveguides
8
output intensity
8
ultra-small silicon
4
waveguide
4
switch
4
coupler switch
4
switch gap-variable
4
gap-variable mechanism
4

Similar Publications

Interest in carbon dioxide (CO) sensors is growing rapidly due to the increasing awareness of the link between air quality and health. Indoor, high CO levels signal poor ventilation, and outdoor the burning of fossil fuels and its associated pollution. CO gas sensors based on integrated optical waveguides are a promising solution due to their excellent gas sensing selectivity, compact size, and potential for mass manufacturing large volumes at low cost.

View Article and Find Full Text PDF

We designed silicon nanowire array cavities with high optical confinement (Γ) in the central nanowire and a high quality factor () through an inverse design method that maximizes Γ×. Moreover, we fabricated an inversely designed cavity with inline input and output waveguides, which is a new configuration for such cavities. The experimental exceeded 50,000, which was consistent with a simulation.

View Article and Find Full Text PDF

The monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.

View Article and Find Full Text PDF

In this paper, we quantitatively compare the autofluorescence of stoichiometric low pressure chemical vapor deposition (LPCVD) silicon nitride and sputtered tantalum pentoxide waveguides at a pump wavelength of 532 nm. Through a direct quantitative characterization of comparable waveguides formed from the two films, we find no observable autofluorescence for tantalum pentoxide waveguides. Our experimental sensitivity is limited by Raman scattering of the pump into our detection band and our measurements indicate that the autofluorescence of the tantalum pentoxide waveguides is more than 600 × smaller than that of silicon nitride waveguides.

View Article and Find Full Text PDF

Silicon nitride (SiN) integrated photonics is a highly promising platform for photonic quantum information processing. However, the efficient generation of single photons remains a significant challenge. Epitaxial InAs/GaAs quantum dots (QDs) embedded in wavelength-scale nanocavities offer a promising solution as single-photon sources (SPSs), but their integration with SiN has not yet been demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!