Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We explore the potential of the nonlinear amplifying loop mirror (NALM)-based phase-preserving 2R (reamplification and reshaping) regenerator for simultaneous regeneration of multiple wavelength-division-multiplexed (WDM) channels. While not considering nonlinear multi-channel propagation, we address two issues of the phase-preserving NALM that appear to us as the major obstacles in adopting it for realistic WDM applications: a high operating power and a detrimental effect of non-small (33% - 50%) pulse duty cycles. After thorough optimization, we find a new operating regime of this regenerator with the non-small duty-cycle capability and approximately an order of magnitude reduction of the required operating power. In addition, we show that the plateau in the input-output power transfer curve does not automatically lead to the reduction of the amplitude jitter, which is particularly noticeable for the non-small duty-cycle pulses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.023017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!