Thanks to an all solid core photonic crystal fiber (PCF) used as a multicore fiber, we propose and experimentally demonstrate what is to our knowledge a new optical detection scheme for the spontaneous emission collection of cold atoms. A Magneto-Optical Trap (MOT) is placed in front of a polished PCF end-face. As they display a higher optical index than the surrounding cladding silica, the 108 rods (equivalent to a 108 pixels camera) of this PCF are light guiding and behave like an array of detectors. Both global and local properties of the trapped atoms are probed. A MOT lifetime is reported. We also take advantage of the multi-core geometry for a real time detection of the center-of-mass motion of the atomic cloud.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.022936 | DOI Listing |
Commun Eng
December 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China.
Rapid and accurate determination of target proteins in cells provide essential diagnostic information for early detection of diseases, evaluation of drug responses, and the study of pathophysiological mechanisms. Traditional Western blotting method has been used for the determination, but it is complex, time-consuming, and semi-quantitative. Here, a tapered seven-core fiber (TSCF) biosensor was designed and fabricated.
View Article and Find Full Text PDFCommonly used linear equalizers in optical transmissions may induce in-band noise enhancement in the high-frequency region, degrading signaling performance. In this Letter, we propose for the first, to our knowledge, time, to mitigate the multi-input-multi-output (MIMO) equalizer-enhanced noise (EEN) in coupled-core multicore fiber (CC-MCF) systems by utilizing the spectral shaping (SS) filter and maximum likelihood sequence detection (MLSD), which have shown effective EEN mitigation in SMF systems. However, CC-MCF systems feature multiple spatial channels, each requiring separate coefficient optimization for SS filters corresponding to each output of MIMO.
View Article and Find Full Text PDFIn this Letter, we propose a new method utilizing femtosecond laser direct writing technology to rapidly inscribe high-quality tilted fiber Bragg gratings (TFBGs) in multicore fibers (MCFs). A series of TFBGs with varying tilt angles were directly inscribed in MCFs using the Plane-by-Plane (Pl-by-Pl) method, and the writing time for a 4 mm long TFBG was only 3.60 s.
View Article and Find Full Text PDFNanophotonics
March 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
We report the fabrication and characterization of a multi-core anti-resonant hollow core fiber with low inter-core coupling. The optical losses were 0.03 and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!