Propagation-length independent SRS threshold in chirally-coupled-core fibers.

Opt Express

Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA.

Published: November 2011

Both analytical study and numerical simulations show that the propagation-length independent Stimulated Raman Scattering (SRS) threshold can be achieved by Stokes wave suppression in optical fibers. We propose a specific design based on Chirally-Coupled-Core (CCC) fibers with spectrally-tailored wavelength-selective transmission to suppress the Stokes wave of Raman scattering. Fibers with length-independent nonlinearity threshold could be particularly advantageous for high power lasers and fiber beam delivery for material processing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.022575DOI Listing

Publication Analysis

Top Keywords

propagation-length independent
8
srs threshold
8
raman scattering
8
stokes wave
8
independent srs
4
threshold chirally-coupled-core
4
fibers
4
chirally-coupled-core fibers
4
fibers analytical
4
analytical study
4

Similar Publications

To achieve the actual situation of water pressure stabilization during underground and tunnel water inrush disasters, the team independently developed a stable water pressure test system and conducted fracture and failure tests on fissured rock masses under the coupling effect of 1MPa stable water pressure and stress and without water pressure. Combined with data collected by acoustic emission instruments, the mechanical characteristics of fracture and failure, crack propagation mechanism, and acoustic emission response mechanism of fissured rock masses under the coupling effect of stable hydraulic pressure and stress were studied. The results showed that throughout the entire experimental process, the hydraulic pressure remained continuously stable, with a decrease of only 0.

View Article and Find Full Text PDF

The magnon propagation length, ⟨ξ⟩, of a ferro-/ferrimagnet (FM) is one of the key factors that controls the generation and propagation of thermally driven magnonic spin current in FM/heavy metal (HM) bilayer based spincaloritronic devices. For the development of a complete physical picture of thermally driven magnon transport in FM/HM bilayers over a wide temperature range, it is of utmost importance to understand the respective roles of temperature-dependent Gilbert damping (α) and effective magnetic anisotropy () in controlling the temperature evolution of ⟨ξ⟩. Here, we report a comprehensive investigation of the temperature-dependent longitudinal spin Seebeck effect (LSSE), radio frequency transverse susceptibility, and broad-band ferromagnetic resonance measurements on TmFeO (TmIG)/Pt bilayers grown on different substrates.

View Article and Find Full Text PDF

A Mechanistic View of Collective Filament Motion in Active Nematic Networks.

Biophys J

January 2020

Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany. Electronic address:

Protein filament networks are structures crucial for force generation and cell shape. A central open question is how collective filament dynamics emerges from interactions between individual network constituents. To address this question, we study a minimal but generic model for a nematic network in which filament sliding is driven by the action of motor proteins.

View Article and Find Full Text PDF

Vibration-controlled transient elastography (VCTE) is widely used for noninvasive fibrosis staging in chronic hepatitis C. However, internal validation is based solely on variability and success rate and lacks reproducible quality indicators. We analysed the graphic representation of shear wave propagation in comparison with morphometric results of liver biopsy, eliminating observer variability bias.

View Article and Find Full Text PDF

The enteric nervous system (ENS) plays an important role in regulating gastrointestinal (GI) motility and can function independently of the central nervous system. Changes in ENS function are a major cause of GI symptoms and disease and may contribute to GI symptoms reported in neuropsychiatric disorders including autism. It is well established that isolated colon segments generate spontaneous, rhythmic contractions known as Colonic Migrating Motor Complexes (CMMCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!