New diffractive imaging techniques using coherent x-ray beams have made possible nanometer-scale resolution imaging by replacing the optics in a microscope with an iterative phase retrieval algorithm. However, to date very high resolution imaging (< 40 nm) was limited to large-scale synchrotron facilities. Here, we present a significant advance in image resolution and capabilities for desktop soft x-ray microscopes that will enable widespread applications in nanoscience and nanotechnology. Using 13 nm high harmonic beams, we demonstrate a record 22 nm spatial resolution for any tabletop x-ray microscope. Finally, we show that unique information about the sample can be obtained by extracting 3-D information at very high numerical apertures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.022470 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Banasthali Vidhyapith, Banasthali, Rajasthan, 304022, India.
Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.
View Article and Find Full Text PDFNat Commun
January 2025
SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, USA.
Diffraction-before-destruction imaging with ultrashort X-ray pulses can visualize non-equilibrium processes, such as chemical reactions, with sub-femtosecond precision in the native environment. Here, a nanospecimen diffracts a single X-ray flash before it disintegrates. The sample structure can be reconstructed from the coherent diffraction image (CDI).
View Article and Find Full Text PDFACS Omega
January 2025
Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey.
In this study, a thorough examination of the chemical, thermal, and mechanical characteristics, as well as shape memory behavior at low temperatures, of blends consisting of polylactic acid (PLA) and polyurethane (TPU) is conducted. The research involves the preparation of PLA/TPU mixtures with varying concentrations of TPU using a high-speed thermo-kinetic mixing approach. Chemical, morphological, and thermal analyses were conducted on pure PLA, TPU, and PLA/TPU mixtures by using Fourier Transform Infrared (FTIR), X-ray diffraction pattern spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA).
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
Cysteine derivatives having disulfide bonds in their side chains can be used as redox-responsive organogelators. The disulfide bond can be cleaved in the presence of certain reducing agents like thiol derivatives such as glutathione (GSH), which is a tripeptide that consists of cysteine, glutamic acid, and glycine. Studies show that cells of certain cancers have higher levels of glutathione due to increased production of reactive oxygen species (ROS).
View Article and Find Full Text PDFACS Omega
January 2025
Hubei Key Laboratory of Petroleum Geochemistry and Environment, College of Resources and Environment, Yangtze University, Wuhan 430100, China.
Recently, significant breakthroughs have been made in the exploration of shale gas in the Lower Cambrian black shale of the Sichuan Basin, indicating a promising commercial extraction potential. However, there remains considerable controversy regarding the pore structural characteristics for this shale formation, especially in the deep-water region. To address this, this paper focused on core samples from two shale gas wells (Xa1 and Xb1) located in the slope-basin facies zone during the Early Cambrian.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!