The efficiency of B(4)C, Mo and Zr barrier layers to improve thermal stability of Mg/Co multilayer up to 400 °C is investigated. Multilayers were deposited by direct current magnetron sputtering and characterized using X-ray and extreme ultraviolet reflection. The results suggest that B(4)C barrier layer is not effective due to drastic diffusion at Mg-B(4)C interface. Although introducing Mo barriers improves the thermal stability from 200 to 300 °C, it increases the interface roughness and thus degrades the optical performances. On the contrary, Zr barriers can significantly increase the thermal stability of Mg/Co up to 400 °C without optical performance degradation. Thus, Mg/Zr/Co/Zr is suitable for EUV applications requiring both optimal optical performances and heat resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.021849 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!