The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.021370 | DOI Listing |
Vaccines (Basel)
December 2024
European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain.
African swine fever virus (ASFV) is a devastating disease affecting domestic and wild suids and causing significant economic losses in the global pig industry. Attenuated modified live virus (MLV) vaccines are the most promising approaches for vaccine development. This study aimed to evaluate the safety and efficacy of four recombinant ASFV genotype II strains, derived from the non-hemadsorbing (non-HAD) attenuated isolate Lv17/WB/Rie1, through the single or simultaneous deletion of virulence-associated genes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Railway Research, University of Huddersfield, Huddersfield HD1 3DH, UK.
Conventional floating bridge systems used during emergency repairs, such as during wartime or after natural disasters, typically rely on passive rubber bearings or semi-active control systems. These methods often limit traffic speed, stability, and safety under dynamic conditions, including varying vehicle loads and fluctuating water levels. To address these challenges, this study proposes a novel Hydraulic Self-Adaptive Bearing System (HABS).
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. The formation of the β-CD:NTX in an aqueous solution was verified using UV-visible spectroscopy, confirming a 1:1 inclusion complex.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Mechanical and Electronic Engineering, Northeastern University, Shenyang 110819, China.
In this study, a fuzzy adaptive impedance control method integrating the backstepping control for the PAM elbow exoskeleton was developed to facilitate robot-assisted rehabilitation tasks. The proposed method uses fuzzy logic to adjust impedance parameters, thereby optimizing user adaptability and reducing interactive torque, which are major limitations of traditional impedance control methods. Furthermore, a repetitive learning algorithm and an adaptive control strategy were incorporated to improve the performance of position accuracy, addressing the time-varying uncertainties and nonlinear disturbances inherent in the exoskeleton.
View Article and Find Full Text PDFPathogens
November 2024
Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
The ESX-1 secretion system is critical for the virulence of as well as for conjugation in the saprophytic model . EsxB (CFP-10) and EsxA (ESAT-6) are secreted effectors required for the function of ESX-1 systems. While some transcription factors regulating the expression of and have been identified, little work has addressed their promoter structures or other determinants of their expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!