Quality-guided phase unwrapping is a widely used technique with different quality definitions and guiding strategies reported. It is thus necessary to do a detailed comparison of these approaches to choose the optimal quality map and guiding strategy. For quality maps, in the presence of noise, transform-based methods are found to be the best choice. However in the presence of discontinuities, phase unwrapping is itself unresolved and hence quality-guided phase unwrapping is not sufficient. For guiding strategies, classical, two-section, and stack-chain guiding strategies are chosen for comparison. If accuracy is the foremost criterion then the classical guiding strategy with a data structure of indexed interwoven linked list is best. If speed is of essence then the stack-chain guiding strategy is the one to use.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.50.006214DOI Listing

Publication Analysis

Top Keywords

phase unwrapping
16
guiding strategies
16
quality-guided phase
12
guiding strategy
12
unwrapping technique
8
quality maps
8
stack-chain guiding
8
guiding
7
unwrapping
4
technique comparison
4

Similar Publications

3D printing is an indispensable technology in modern life and is widely used in aerospace, exoskeleton, and architecture. The increasing accuracy requirements of 3D printed objects in these fields require high-precision measurement methods to obtain accurate data. Based on the precision measurement requirements, in this study, a fast multifrequency phase unwrapping method based on 3D printing object appearance acquisition is proposed.

View Article and Find Full Text PDF

Super-resolution left ventricular flow and pressure mapping by Navier-Stokes-informed neural networks.

Comput Biol Med

December 2024

Dept. of Mechanical Engineering, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA; Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA. Electronic address:

Intraventricular vector flow mapping (VFM) is an increasingly adopted echocardiographic technique that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about flow physics; most notably the forces within the fluid and the resulting accelerations.

View Article and Find Full Text PDF

The growing interest in reconfigurable intelligent surfaces (RIS) for wireless communications is evident, particularly in addressing challenges beyond the normal incidence condition of electromagnetic waves. This paper introduces an innovative approach to achieve beam steering in reflecting-type array structures, specifically reflectarrays, through the use of Reconfigurable Electro-Mechanical Reflectarray (REMR) technology. The REMR structure, equipped with a cam-shaped actuator beneath each unit cell's ground plane, serves as the basis for this design.

View Article and Find Full Text PDF

Phase unwrapping is crucial in fringe projection profilometry (FPP) 3D measurement. However, achieving efficient and robust phase unwrapping remains a challenge, particularly when dealing with high-frequency fringes to achieve high accuracy. Existing methods rely on heavy fringe projections, inevitably sacrificing measurement efficiency.

View Article and Find Full Text PDF

We propose a dual-wavelength scheme for a clipping-avoidance photonic analog-to-digital converter (PADC) operating at the sub-Nyquist sampling rate. The scheme utilizes two characteristics, the phase-wrapping feature of a PADC and the wavelength-sensitive feature of a phase modulator, equivalently performing a dual-modulus (DM) modulo operation to avoid clipping. Coupled with an unwrapping algorithm based on the Chinese remainder theorem (CRT), the proposed scheme enables signal reconstruction from the processed signals independent of the sampling rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!