Use of contiguous congenic strains in analyzing compound QTLs.

Physiol Genomics

Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA.

Published: February 2012

Genetic analysis of polygenic traits in rats and mice has been very useful for finding the approximate chromosomal locations of the genes causing quantitative phenotypic variation, so-called quantitative trait loci (QTL). Further localization of the causative genes and their ultimate identification has, however, proven to be slow and frustrating. A major technique for gene identification in such models utilizes series of congenic strains with progressively smaller chromosomal segments introgressed from one inbred strain into another inbred strain. Under the assumption that a single causative locus underlies a QTL, nested series of congenic strains were earlier suggested as an appropriate configuration for the congenic strains. It is now known that most QTL are compound, that is, the QTL signal is caused by clusters of loci where alleles exert positive, negative, and interactive effects on the trait in a given strain comparison. It is argued that in this situation an initial series of nonoverlapping contiguous congenic strains over a relatively large chromosomal region will lead to a better appreciation of the underlying complexity of the QTL and therefore more rapid gene identification. Examples from the literature where this strategy would be helpful, as well as a case where it would be potentially counterproductive, are given.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289116PMC
http://dx.doi.org/10.1152/physiolgenomics.00136.2011DOI Listing

Publication Analysis

Top Keywords

congenic strains
20
contiguous congenic
8
gene identification
8
series congenic
8
inbred strain
8
strains
5
qtl
5
strains analyzing
4
analyzing compound
4
compound qtls
4

Similar Publications

Streptozotocin (STZ) is widely used as a pancreatic beta-cell toxin to induce experimental diabetes in rodents. Strain-dependent variations in STZ-induced diabetes susceptibility have been reported in mice. Differences in STZ-induced diabetes susceptibility are putatively related to pancreatic beta-cell fragility via DNA damage response.

View Article and Find Full Text PDF

Narrowing the region of candidate genes that control the development of protoscoleces of Echinococcus multilocularis in the mouse liver.

Infect Genet Evol

January 2025

Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, N18 W9, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan.

Alveolar echinococcosis is a zoonosis caused by the larval stage of Echinococcus multilocularis. In previous studies, QTL analysis using C57BL/6 N (B6) and DBA/2 (D2) which differ in susceptibility suggested the presence of genes on chromosome 1 that control protoscolex development. In this study, we constructed several congenic mice with different chromosome 1 regions substituted to confirm the presence of responsible genes and to narrow down the regions where the responsible genes exist.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the mitochondrial protein NNT in obesity-related metabolic issues, using a specific mouse model lacking NNT genetic material.
  • Unlike previous studies, this research utilized a high-fat diet (45% calories from fat) that better represents typical fat-rich diets compared to the usual 60%.
  • Results show that mice without NNT gained less weight on a high-fat diet but had poorer glucose tolerance, while also revealing an increase in brown adipose tissue mass and inflammatory markers in the hypothalamus associated with diet-induced inflammation.
View Article and Find Full Text PDF

Objective: To determine the downstream effects on ovarian function and immune cell differentiation in the ovary and uterus using a model in which RGS2 was knocked out specifically in CD4+ T cells.

Design: Laboratory based experiments with female mice.

Animals: Female congenic (fully backcrossed) and non-congenic (mixed strain) mice with CD4 T cell-specific RGS2 knockout.

View Article and Find Full Text PDF

Exposure to Gold Induces Autoantibodies against Nuclear Antigens in A.TL Mice.

Biology (Basel)

October 2024

Division of Clinical Chemistry and Pharmacology (KKF), Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden.

To demonstrate causation or/and assess pathogenic mechanisms of environment-induced autoimmunity, various animal models that mimic the characteristics of the human autoimmune diseases need to be developed. Experimental studies in mice reveal the genetic factors that contribute to autoimmune diseases. Here, the immune response of two mouse strains congenic for non-H-2 genes, A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!