Phys Rev Lett
UMR 168, Institut Curie, Centre de Recherche, 26 rue d'Ulm 75005 Paris, France.
Published: October 2011
The precise role of the microenvironment on tumor growth is poorly understood. Whereas the tumor is in constant competition with the surrounding tissue, little is known about the mechanics of this interaction. Using a novel experimental procedure, we study quantitatively the effect of an applied mechanical stress on the long-term growth of a spheroid cell aggregate. We observe that a stress of 10 kPa is sufficient to drastically reduce growth by inhibition of cell proliferation mainly in the core of the spheroid. We compare the results to a simple numerical model developed to describe the role of mechanics in cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.107.188102 | DOI Listing |
Heliyon
January 2025
Department of Cardiology, Huanggang central Hospital of Yangtze University, Huanggang, China.
Pathological myocardial hypertrophy can induce heart failure with high mortality, it is necessary to explore its pathogenesis. Tripartite motif-containing 26 (TRIM26) belongs to the multidomain E3 ubiquitin ligase family. We observed increased expression of TRIM26 in the myocardium of C57BL/6 mice subjected to transverse aortic constriction (TAC) surgery and neonatal rat cardiomyocytes (NRCMs) treated with phenylephrine (PE).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798-7348, USA. Electronic address:
Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.
View Article and Find Full Text PDFMol Med
January 2025
Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
Background: Chronic kidney disease (CKD) is a leading cause of death in the United States, and renal fibrosis represents a pathologic hallmark of CKD. Extracellular cold-inducible RNA-binding protein (eCIRP) is a stress response protein involved in acute inflammation, tissue injury and regulated cell death. However, the role of eCIRP in chronic inflammation and tissue injury has not been elucidated.
View Article and Find Full Text PDFJ Hypertens
December 2024
Institute for Fetology, The First Affiliated Hospital of Soochow University, Jiangsu.
Background: Paternal preconception alcohol exposure affects fetal development; however, it is largely unknown about the influences on offspring vasculature and mechanisms.
Methods: Offspring born form paternal rats treated with alcohol or water before pregnant was raised until 3 months of age. Vessel tone of mesenteric arteries was detected using myograph system; whole-cell calcium channel current in smooth muscle cells was tested using patch-clamp; molecule expressions were detected with real-time PCR, western blotting, and Dihydroethidium (DHE); DNA methylations were determined using targeted bisulfate sequencing assay.
Acta Pharmacol Sin
January 2025
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.