Using the yeast two-hybrid system, intraspecific protein interactions were detected in Streptococcus iniae and Lactococcus lactis subsp. cremoris between the transmembrane activation protein (CpsC and EpsA, respectively) and the protein tyrosine kinase (CpsD and EpsB, respectively), between two protein tyrosine kinases, and between the protein tyrosine kinase and the phosphotyrosine phosphatase (CpsB and EpsC, respectively). For each of these intraspecific interactions, interspecific interactions were also detected when one protein was from S. iniae and the other was from Streptococcus thermophilus . Interactions were also observed between two protein tyrosine kinases when one protein was from either of the Streptococcus species and the other from L. lactis subsp. cremoris. The results and sequence comparisons performed in this study support the conclusion that interactions among the components of the tyrosine kinase - phosphatase regulatory system are conserved in the order Lactobacillales and that interspecific genetic exchanges of the genes that encode these proteins have the potential to form functional recombinants. A better understanding of intraspecific and interspecific protein interactions involved in regulating exopolysaccharide biosynthesis may facilitate construction of improved strains for industrial uses as well as identification of factors needed to form functional regulatory complexes in naturally occurring recombinants.

Download full-text PDF

Source
http://dx.doi.org/10.1139/w11-090DOI Listing

Publication Analysis

Top Keywords

protein tyrosine
16
lactis subsp
12
subsp cremoris
12
protein
9
intraspecific interspecific
8
interspecific interactions
8
regulating exopolysaccharide
8
streptococcus thermophilus
8
streptococcus iniae
8
iniae lactococcus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!