Toward accurate theoretical thermochemistry of first row transition metal complexes.

J Phys Chem A

Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5070, USA.

Published: January 2012

The recently developed correlation consistent Composite Approach for transition metals (ccCA-TM) was utilized to compute the thermochemical properties for a collection of 225 inorganic molecules containing first row (3d) transition metals, ranging from the monohydrides to larger organometallics such as Sc(C(5)H(5))(3) and clusters such as (CrO(3))(3). Ostentatiously large deviations of ccCA-TM predictions stem mainly from aging and unreliable experimental data. For a subset of 70 molecules with reported experimental uncertainties less than or equal to 2.0 kcal mol(-1), regardless of the presence of moderate multireference character in some molecules, ccCA-TM achieves transition metal chemical accuracy of ±3.0 kcal mol(-1) as defined in our earlier work [J. Phys. Chem. A2007, 111, 11269-11277] by giving a mean absolute deviation of 2.90 kcal mol(-1) and a root-mean-square deviation of 3.91 kcal mol(-1). As subsets are constructed with decreasing upper limits of reported experimental uncertainties (5.0, 4.0, 3.0, 2.0, and 1.0 kcal mol(-1)), the ccCA-TM mean absolute deviations were observed to monotonically drop off from 4.35 to 2.37 kcal mol(-1). In contrast, such a trend is missing for DFT methods as exemplified by B3LYP and M06 with mean absolute deviations in the range 12.9-14.1 and 10.5-11.0 kcal mol(-1), respectively. Salient multireference character, as demonstrated by the T(1)/D(1) diagnostics and the weights (C(0)(2)) of leading electron configuration in the complete active self-consistent field wave function, was found in a significant amount of molecules, which can still be accurately described by the single reference ccCA-TM. The ccCA-TM algorithm has been demonstrated as an accurate, robust, and widely applicable model chemistry for 3d transition metal-containing species with versatile bonding features.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp205710eDOI Listing

Publication Analysis

Top Keywords

kcal mol-1
28
row transition
8
transition metal
8
transition metals
8
reported experimental
8
experimental uncertainties
8
multireference character
8
absolute deviations
8
kcal
7
mol-1
7

Similar Publications

Using high-level quantum chemical calculations, we predicted a strong O-H⋯C interaction between the apical carbon atoms of pyramidane and its derivatives and water molecules. Analysis of calculated electrostatic potential maps showed that there are areas of strong negative potential above apical carbon atoms in all studied structures. The results of quantum chemical calculations showed that the O-H⋯C interaction between the hydrogen atom of water and the apical carbon atom of pyramidane derivatives with four -CH substituents is unexpectedly strong, Δ = -7.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

December 2024

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

All-carbon supramolecular complexation of a bilayer molecular nanographene with [60] and [70]fullerenes.

Org Chem Front

December 2024

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Av. Complutense S/N 28040 Madrid Spain

Supramolecular chemistry of carbon-based materials provides a variety of chemical structures with potential applications in materials science and biomedicine. Here, we explore the supramolecular complexation of fullerenes C and C, highlighting the ability of molecular nanographene tweezers to capture these structures. The binding constant for the CNG-1⊃C complex was significantly higher than for CNG-1⊃C, showing a clear selectivity for the more π-extended C.

View Article and Find Full Text PDF

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!