Consistent description of the metallic phase of overdoped cuprate superconductors as an anisotropic marginal Fermi liquid.

Phys Rev Lett

School of Mathematics and Physics, University of Queensland, Brisbane, 4072 Queensland, Australia.

Published: September 2011

AI Article Synopsis

Article Abstract

We consider a model self-energy consisting of an isotropic Fermi liquid term and a marginal Fermi liquid term which is anisotropic over the Fermi surface, vanishing in the same directions as the superconducting gap and the pseudogap. This model self-energy gives a consistent description of experimental results from angle-dependent magnetoresistance, specific heat, de Haas-van Alphen, and measurements of the quasiparticle dispersion near the Fermi surface from photoemission. In particular, we reconcile the strongly doping-dependent anomalous scattering rate observed in angle-dependent magnetoresistance with the almost doping-independent specific heat.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.107.147001DOI Listing

Publication Analysis

Top Keywords

fermi liquid
12
consistent description
8
marginal fermi
8
model self-energy
8
liquid term
8
fermi surface
8
angle-dependent magnetoresistance
8
specific heat
8
fermi
5
description metallic
4

Similar Publications

Cavity correlations and the onset of charge ordering at charged interfaces: A modified Poisson-Fermi approach.

J Chem Phys

January 2025

Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.

Charge layering in the close vicinity of charged interfaces is a well-known effect, extensively reported in both experiments and simulations of Room Temperature Ionic Liquids (RTILs) and concentrated electrolytes. The traditional Poisson-Fermi (PF) theory is able to successfully describe overcrowding effects but fails to reproduce charge ordering even in strong coupling regimes. Simple models, yet capable of investigating the interplay between these important interfacial phenomena, are still lacking.

View Article and Find Full Text PDF

Completion of lunar magma ocean solidification at 4.43 Ga.

Proc Natl Acad Sci U S A

January 2025

Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.

Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon and a possible smaller patch in the northwest portion of the Moon's South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 My, while studies of radioactive decay systems have yielded inconsistent ages for the completion of LMO crystallization covering over 160 My.

View Article and Find Full Text PDF

We consider a half-filled Chern band and its transport properties in two phases that it may form: the electronic Fermi liquid and the composite-fermion Fermi liquid. For weak disorder, we show that the Hall resistivity for the former phase is very small, while for the latter it is close to 2h/e^{2}, independent of the distribution of the Berry curvature in the band. At rising temperature and high frequency, we expect the Hall resistivity of the electronic phase to rise, and that of the composite-fermion phase to deviate from 2h/e^{2}.

View Article and Find Full Text PDF

Unusual violation of the Wiedemann-Franz law at ultralow temperatures in topological compensated semimetals.

Nat Commun

January 2025

Anhui Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.

Thermal conductivity and electrical resistivity at ultralow temperatures and high magnetic fields are studied in the topological compensated semimetals TaAs, NbAs, and NdSb. A striking phenomenon is observed where the thermal conductivity shows a T scaling at very low temperatures, while the resistivity shows a T-independent residual term. This indicates a strong violation of the Wiedemann-Franz (WF) law, since the field dependence of κ shows that the low-temperature thermal conductivity is dominated by electronic transport.

View Article and Find Full Text PDF

The decoupling of electronic states between metals and semiconductors through controlled construction of artificial van der Waals (vdW) heterojunctions enables tailored Schottky barriers. However, the interfacial chemistry, especially involving solid-liquid interfaces, remains unexplored. Here, first principles calculations reveal unexpected strong Fermi-level pinning in various metal/MoS vdW heterojunctions with intercalated ice-like water bilayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!