The method of oxygen isotope substitution in neutron diffraction is introduced as a site specific structural probe. It is employed to measure the structure of light versus heavy water, thus circumventing the assumption of isomorphism between H and D as used in more traditional neutron diffraction methods. The intramolecular and intermolecular O-H and O-D pair correlations are in excellent agreement with path integral molecular dynamics simulations, both techniques showing a difference of ≃0.5% between the O-H and O-D intramolecular bond distances. The results support the validity of a competing quantum effects model for water in which its structural and dynamical properties are governed by an offset between intramolecular and intermolecular quantum contributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.107.145501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!