Femoral bone degeneration has been recognized as an important cause of lameness in broiler chickens for many years, but the pathogenesis of this condition has not been completely elucidated. The current work presents comprehensive analyses of changes associated with femoral bone degeneration based on findings from gross pathology, histopathology, biochemistry, and synchrotron-based imaging techniques. Gross lesions were predominantly seen in epiphysis and metaphysis of the proximal femur, and infrequently in distal femur, but we did not observe gross lesions in the diaphysis. Bone fractures were observed occasionally, but the most common lesions involved separation of articular cartilage of the femoral bone head, with progressive erosions of the subchondral bone. In advanced cases, on histopathological examination, changes in femoral bone were indicative of chondronecrosis and osteonecrosis. Computed tomography revealed that the degenerative process involves loss of trabecular bone. The course of the lesion development in the mineralized matrix appears to be coupled with increased bone resorption associated with excessive proliferation of pathologically altered osteoclasts. Light microscopy, Fourier transform infrared spectroscopy, and biochemical analysis provided consistent evidence that lowered protein content of the bone organic matrix is an integral component of femoral bone pathology, but these changes do not appear to be associated with excessive activity of matrix metalloproteinases. Taken together, our findings indicate that femoral bone degeneration is associated with structural changes occurring in both inorganic and organic matrix of the bone, but insufficiency in protein metabolism is most probably a primary aetiological factor in the natural history of femoral bone degeneration. However, it is important to stress that our findings do not negate the importance of bacterial infection in the evolution of this condition. Pathogens play a critical role in the progressive pathogenesis of this condition, which ultimately is manifested, in most instances, as femoral head necrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03079457.2011.626017DOI Listing

Publication Analysis

Top Keywords

femoral bone
32
bone degeneration
20
bone
14
femoral
9
broiler chickens
8
pathogenesis condition
8
gross lesions
8
associated excessive
8
organic matrix
8
associated
5

Similar Publications

Introduction: Kinematic alignment (KA) in total knee arthroplasty (TKA) is by definition a pure femoral resurfacing procedure aiming to restore the individual prearthritic anatomy. However, when a 2 mm compensation is systematically used on the worn side, the variability in cartilage thickness in the unworn compartment might alter the accuracy of the technique. This study aimed to validate two intraoperative femoral cartilage thickness measurement techniques by comparing them to the photographic method, which measures cartilage thickness through pixel analysis of bone-cut images.

View Article and Find Full Text PDF

Osteonecrosis of the femoral head (ONFH) is a prevalent orthopedic disorder characterized primarily by compromised blood supply. This vascular deficit results in cell apoptosis, trabecular bone loss, and structural collapse of the femoral head at late stage, significantly impairing joint function. While MRI is a highly effective tool for diagnosing ONFH in its early stages, challenges remain due to the limited availability and high cost of MRI, as well as the absence of routine MRI screening in asymptomatic patients.

View Article and Find Full Text PDF

The death of osteoblasts induced by glucocorticoid (GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head (SIONFH). Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH. Isovitexin has demonstrated antioxidant properties, but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.

View Article and Find Full Text PDF

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.

View Article and Find Full Text PDF

Soft tissue-like coupling materials for in vitro acoustic emission studies in total hip arthroplasty.

J Mech Behav Biomed Mater

January 2025

Laboratory for Biomechanics and Biomaterials (LBB), Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625, Hannover, Germany. Electronic address:

In hip arthroplasty, relative movements between the femoral stem and bone can lead to implant loosening, resulting in extensive bone loss. Acoustic emission (AE) analysis is a promising technique for a nondestructive and noninvasive detection of these relative movements. To develop such a detection method, in vitro investigations using piezoelectric AE sensors on implant stems in artificial or human femora are required to characterize the AE signals induced by loosening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!