For inner mitochondrial membrane (IMM) proteins that do not undergo N-terminal cleavage, the activity may occur in the absence of a receptor present in the mitochondrial membrane. One such protein is human 3β-hydroxysteroid dehydrogenase 2 (3βHSD2), the IMM resident protein responsible for catalyzing two key steps in steroid metabolism: the conversion of pregnenolone to progesterone and dehydroepiandrosterone to androstenedione. Conversion requires that 3βHSD2 serve as both a dehydrogenase and an isomerase. The dual functionality of 3βHSD2 results from a conformational change, but the trigger for this change remains unknown. Using fluorescence resonance energy transfer, we found that 3βHSD2 interacted strongly with a mixture of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC). 3βHSD2 became less stable when incubated with the individual lipids, as indicated by the decrease in thermal denaturation (T(m)) from 42 to 37 °C. DPPG, alone or in combination with DPPC, led to a decrease in α-helical content without an effect on the β-sheet conformation. With the exception of the 20 N-terminal amino acids, mixed vesicles protected 3βHSD2 from trypsin digestion. However, protein incubated with DPPC was only partially protected. The lipid-mediated unfolding completely supports the model in which a cavity forms between the α-helix and β-sheet. As 3βHSD2 lacks a receptor, opening the conformation may activate the protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399592 | PMC |
http://dx.doi.org/10.1021/bi2016102 | DOI Listing |
Biochemistry
December 2011
Mercer University School of Medicine and Memorial University Medical Center, Savannah, Georgia 31404, United States.
For inner mitochondrial membrane (IMM) proteins that do not undergo N-terminal cleavage, the activity may occur in the absence of a receptor present in the mitochondrial membrane. One such protein is human 3β-hydroxysteroid dehydrogenase 2 (3βHSD2), the IMM resident protein responsible for catalyzing two key steps in steroid metabolism: the conversion of pregnenolone to progesterone and dehydroepiandrosterone to androstenedione. Conversion requires that 3βHSD2 serve as both a dehydrogenase and an isomerase.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2011
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
Disabled-2 (Dab2) is an adaptor protein involved in several biological processes ranging from endocytosis to platelet aggregation. During endocytosis, the Dab2 phosphotyrosine-binding (PTB) domain mediates protein binding to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the inner leaflet of the plasma membrane. As a result of platelet activation, Dab2 is released from α-granules and associates with both the αIIbβ3 integrin receptor and sulfatide lipids on the platelet surface through its N-terminal region including the PTB domain (N-PTB), thus, modulating platelet aggregation.
View Article and Find Full Text PDFJ Mol Biol
May 2011
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
The integral membrane protein complex between phospholamban (PLN) and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) regulates cardiac contractility. In the unphosphorylated form, PLN binds SERCA and inhibits Ca(2+) flux. Upon phosphorylation of PLN at Ser16, the inhibitory effect is reversed.
View Article and Find Full Text PDFJ Biol Chem
April 2011
Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China.
Hepatocytes show endoplasmic reticulum (ER) stress when exposed to lipotoxic stimuli such as hyperlipidemia. Recent work has revealed that AMP- activated protein kinase (AMPK) can mitigate ER stress. In this study we investigated the impact of AMPK on lipid-induced ER stress in hepatocytes and its underlying molecular mechanism.
View Article and Find Full Text PDFJ Biol Chem
February 1989
Biocenter, University of Basel, Switzerland.
An artificial mitochondrial precursor protein (the presequence of cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase) binds to isolated yeast mitochondrial outer membranes and to liposomes whose phospholipid composition resembles that of outer membranes. In both cases, binding is strongly inhibited by low temperature or methotrexate (which stabilizes the dihydrofolate reductase moiety) and partly inhibited by adriamycin (which binds to acidic phospholipids). Binding is accompanied by partial unfolding of the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!