Identification and characterization of a novel gene, hshB, in Xanthomonas oryzae pv. oryzicola co-regulated by quorum sensing and clp.

Phytopathology

College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.

Published: March 2012

Virulence factors of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, are regulated by a diffusible signal factor (DSF)-dependent quorum-sensing (QS) system. In this study, a novel pathogenicity-related gene, Xoryp_010100018570 (named hshB), of X. oryzae pv. oryzicola was characterized. hshB encodes a hydrolase with a putative signal peptide, which is a homolog of imidazolonepropionase. Bioinformatic analysis showed that hshB is relatively conserved in the genus Xanthomonas but the homologous gene of hshB was not found in X. oryzae pv. oryzae. Reverse-transcription polymerase chain reaction (PCR) analysis showed that hshB and its upstream gene, Xoryp_010100018565 (named hshA), are co-transcribed in X. oryzae pv. oryzicola. Subsequent experimental results indicated that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production, growth in minimal medium, and resistance to oxidative stress and bismerthiazol of X. oryzae pv. oryzicola. Mutation of clp, encoding a global regulator, resulted in similar phenotypes. Real-time PCR assays showed that hshB transcription is positively regulated by clp and DSF, and induced by poor nutrition. Our study not only found a novel gene hshB regulated by DSF-dependent QS system and clp but also showed that hshB was required for virulence of X. oryzae pv. oryzicola.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-06-11-0169DOI Listing

Publication Analysis

Top Keywords

oryzae oryzicola
24
gene hshb
12
hshb
10
novel gene
8
oryzae
8
xanthomonas oryzae
8
study novel
8
hshb oryzae
8
analysis hshb
8
oryzicola
6

Similar Publications

Design, Synthesis, and Antibacterial Activity of Novel Sulfone Derivatives Containing a 1,2,4-Triazolo[4,3-]Pyridine Moiety.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.

View Article and Find Full Text PDF

A cationic AIE luminutesogen TBPD-6C as a potential bacterial detection agent and bactericide for plants bacterium.

Pestic Biochem Physiol

December 2024

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minutesistry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China. Electronic address:

The rise of plant bacterial pathogens poses a significant threat to the yield and quality of essential food crops and cash crops globally. Our research introduced a versatile cationic AIE fluorescent probe for detecting and eliminating plant bacteria. With its unique aggregation-induced emission property, TBPD-6C can effectively detect plant bacteria by causing a fluorescence quenching effect and enables bacterial imaging under green fluorescence channels.

View Article and Find Full Text PDF

Sulfone derivatives containing an oxazole moiety as potential antibacterial agents: design, synthesis, antibacterial activity, and mechanism.

Pest Manag Sci

November 2024

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China.

Background: Bacterial diseases in plants pose a serious threat to crop production, leading to substantial food loss every year. Prolonged and repeated use of a single antibacterial agent can promote resistance in pathogenic bacteria. Therefore, there is an urgent need to develop efficient antibacterial agents for the treatment of bacterial diseases.

View Article and Find Full Text PDF

Pleosporales represents the largest order within the class Dothideomycetes (Fungi), comprising phytopathogenic, saprobic, and endophytic taxa with a widespread presence in terrestrial and aquatic environments. Rice () is a primary economic crop in numerous tropical countries, particularly in Thailand. Studying fungal species associated with rice holds the potential to enhance our understanding of fungal diversity, lifestyles, and biology of rice, offering valuable insights for future research aimed at disease management and yield improvement.

View Article and Find Full Text PDF

Noninvasive Raman spectroscopy for the detection of rice bacterial leaf blight and bacterial leaf streak.

Talanta

January 2025

State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, 100193, China. Electronic address:

Article Synopsis
  • Plant diseases cause major food production losses, making quick detection of pathogens vital to protecting crops.
  • Raman spectroscopy (RS) is a fast, sensitive, and non-destructive method for detecting bacteria without needing extra labeling.
  • Using RS combined with convolutional neural networks, researchers achieved 97.5% accuracy in identifying two bacteria strains affecting rice, even detecting early-stage infections at 87.02% accuracy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!