Virulence factors of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, are regulated by a diffusible signal factor (DSF)-dependent quorum-sensing (QS) system. In this study, a novel pathogenicity-related gene, Xoryp_010100018570 (named hshB), of X. oryzae pv. oryzicola was characterized. hshB encodes a hydrolase with a putative signal peptide, which is a homolog of imidazolonepropionase. Bioinformatic analysis showed that hshB is relatively conserved in the genus Xanthomonas but the homologous gene of hshB was not found in X. oryzae pv. oryzae. Reverse-transcription polymerase chain reaction (PCR) analysis showed that hshB and its upstream gene, Xoryp_010100018565 (named hshA), are co-transcribed in X. oryzae pv. oryzicola. Subsequent experimental results indicated that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production, growth in minimal medium, and resistance to oxidative stress and bismerthiazol of X. oryzae pv. oryzicola. Mutation of clp, encoding a global regulator, resulted in similar phenotypes. Real-time PCR assays showed that hshB transcription is positively regulated by clp and DSF, and induced by poor nutrition. Our study not only found a novel gene hshB regulated by DSF-dependent QS system and clp but also showed that hshB was required for virulence of X. oryzae pv. oryzicola.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-06-11-0169 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minutesistry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China. Electronic address:
The rise of plant bacterial pathogens poses a significant threat to the yield and quality of essential food crops and cash crops globally. Our research introduced a versatile cationic AIE fluorescent probe for detecting and eliminating plant bacteria. With its unique aggregation-induced emission property, TBPD-6C can effectively detect plant bacteria by causing a fluorescence quenching effect and enables bacterial imaging under green fluorescence channels.
View Article and Find Full Text PDFPest Manag Sci
November 2024
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China.
Background: Bacterial diseases in plants pose a serious threat to crop production, leading to substantial food loss every year. Prolonged and repeated use of a single antibacterial agent can promote resistance in pathogenic bacteria. Therefore, there is an urgent need to develop efficient antibacterial agents for the treatment of bacterial diseases.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
Pleosporales represents the largest order within the class Dothideomycetes (Fungi), comprising phytopathogenic, saprobic, and endophytic taxa with a widespread presence in terrestrial and aquatic environments. Rice () is a primary economic crop in numerous tropical countries, particularly in Thailand. Studying fungal species associated with rice holds the potential to enhance our understanding of fungal diversity, lifestyles, and biology of rice, offering valuable insights for future research aimed at disease management and yield improvement.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, 100193, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!