Meiotic recombination, including crossovers (COs) and gene conversions (GCs), impacts natural variation and is an important evolutionary force. COs increase genetic diversity by redistributing existing variation, whereas GCs can alter allelic frequency. Here, we sequenced Arabidopsis Landsberg erecta (Ler) and two sets of all four meiotic products from a Columbia (Col)/Ler hybrid to investigate genome-wide variation and meiotic recombination at nucleotide resolution. Comparing Ler and Col sequences uncovered 349,171 Single Nucleotide Polymorphisms (SNPs), 58,085 small and 2315 large insertions/deletions (indels), with highly correlated genome-wide distributions of SNPs, and small indels. A total of 443 genes have at least 10 nonsynonymous substitutions in protein-coding regions, with enrichment for disease-resistance genes. Another 316 genes are affected by large indels, including 130 genes with complete deletion of coding regions in Ler. Using the Arabidopsis qrt1 mutant, two sets of four meiotic products were generated and analyzed by sequencing for meiotic recombination, representing the first tetrad analysis with whole-genome sequencing in a nonfungal species. We detected 18 COs, six of which had an associated GC event, and four GCs without COs (NCOs), and revealed that Arabidopsis GCs are likely fewer and with shorter tracts than those in yeast. Meiotic recombination and chromosome assortment events dramatically redistributed genome variation in meiotic products, contributing to population diversity. In particular, meiosis provides a rapid mechanism to generate copy-number variation (CNV) of sequences that have different chromosomal positions in Col and Ler.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290786 | PMC |
http://dx.doi.org/10.1101/gr.127522.111 | DOI Listing |
PLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.
View Article and Find Full Text PDFGenetics
January 2025
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris, F-75005, France.
Modifiers of recombination rates have been described but the selective pressures acting on them and their effect on adaptation to novel environments remain unclear. We performed experimental evolution in the nematode Caenorhabditis elegans using alternative rec-1 alleles modifying the position of meiotic crossovers along chromosomes without detectable direct fitness effects. We show that adaptation to a novel environment is impaired by the allele that decreases recombination rates in the genomic regions containing fitness variation.
View Article and Find Full Text PDFPLoS Biol
January 2025
Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön, Germany.
A recent study in PLOS Biology on the epigenetic recombination regulator PRDM9 in salmonid fish reveals that its function has been preserved across vertebrates for hundreds of millions of years, with rapidly evolving DNA-binding domains being a defining attribute.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!