Antiphospholipid Abs (APLAs) are associated with thrombosis and recurrent fetal loss. These Abs are primarily directed against phospholipid-binding proteins, particularly β(2)GPI, and activate endothelial cells (ECs) in a β(2)GPI-dependent manner after binding of β(2)GPI to EC annexin A2. Because annexin A2 is not a transmembrane protein, the mechanisms of APLA/anti-β(2)GPI Ab-mediated EC activation are uncertain, although a role for a TLR4/myeloid differentiation factor 88-dependent pathway leading to activation of NF-κB has been proposed. In the present study, we confirm a critical role for TLR4 in anti-β(2)GPI Ab-mediated EC activation and demonstrate that signaling through TLR4 is mediated through the assembly of a multiprotein signaling complex on the EC surface that includes annexin A2, TLR4, calreticulin, and nucleolin. An essential role for each of these proteins in cell activation is suggested by the fact that inhibiting the expression of each using specific siRNAs blocked EC activation mediated by APLAs/anti-β(2)GPI Abs. These results provide new evidence for novel protein-protein interactions on ECs that may contribute to EC activation and the pathogenesis of APLA/anti-β(2)GPI-associated thrombosis and suggest potential new targets for therapeutic intervention in antiphospholipid syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265208PMC
http://dx.doi.org/10.1182/blood-2011-03-344671DOI Listing

Publication Analysis

Top Keywords

cell activation
8
ab-mediated activation
8
activation
7
novel pathway
4
pathway human
4
human endothelial
4
endothelial cell
4
activation antiphospholipid/anti-β2
4
antiphospholipid/anti-β2 glycoprotein
4
glycoprotein antibodies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!