The accurate diagnosis of diseases with high prevalence rate, such as Alzheimer, Parkinson, diabetes, breast cancer, and heart diseases, is one of the most important biomedical problems whose administration is imperative. In this paper, we present a new method for the automated diagnosis of diseases based on the improvement of random forests classification algorithm. More specifically, the dynamic determination of the optimum number of base classifiers composing the random forests is addressed. The proposed method is different from most of the methods reported in the literature, which follow an overproduce-and-choose strategy, where the members of the ensemble are selected from a pool of classifiers, which is known a priori. In our case, the number of classifiers is determined during the growing procedure of the forest. Additionally, the proposed method produces an ensemble not only accurate, but also diverse, ensuring the two important properties that should characterize an ensemble classifier. The method is based on an online fitting procedure and it is evaluated using eight biomedical datasets and five versions of the random forests algorithm (40 cases). The method decided correctly the number of trees in 90% of the test cases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TITB.2011.2175938DOI Listing

Publication Analysis

Top Keywords

random forests
16
diagnosis diseases
12
automated diagnosis
8
diseases based
8
dynamic determination
8
number trees
8
forests algorithm
8
proposed method
8
method
5
diseases
4

Similar Publications

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Purpose: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop a preoperative predictive model for post-DMEK OHT.

Methods: Patients who underwent DMEK at Gangnam Severance Hospital between 2017 and 2024 were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!