Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.502 | DOI Listing |
Tissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFPurpose: To investigate the relationship between the cartilage acetabular index and acetabular development and secondary dysplasia.
Methods: A total of 58 hips underwent intraoperative arthrography-guided open reduction or limited open reduction due to developmental hip dysplasia between 2011 and 2015 was included in the study. We evaluated patients with acetabular angle 8º as group 2.
Medicine (Baltimore)
November 2024
Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
The incidence of arytenoid dislocation in abdominal surgery is relatively high, the cause is unknown, and it has not received sufficient attention. To identify the risk factors of arytenoid dislocation after abdominal surgery, and to establish a clinical prediction model based on relevant clinicopathological characteristics. We retrospectively collected the clinical data of 50 patients with arytenoid dislocation (AD) and 200 patients without AD after abdominal surgery with general anesthetic tracheal intubation in our Hospital from January 2013 to December 2019.
View Article and Find Full Text PDFJ Orthop Trauma
December 2024
Department of Orthopaedics, The Ohio State University, Columbus, OH.
The ribs, sternum, and costal margin provide a rigid, but flexible chest wall that functions to provide protection to the vital cardiothoracic organs, while also allowing for varying levels of respiration based on physiologic need. The latter function is accomplished through various muscular attachments and rib articulations with both the axial spine posteriorly and the sternum anteriorly. The accessory muscles of inspiration rely on the downward slope and outward curve of each rib, which when contracted move the ribs upward and outward, in turn forcing the sternum anterior and increasing the thoracic volume.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!