A new-type of donor-acceptor π-conjugated (D-π-A) fluorescent dyes NI3-NI8 with a pyridine ring as electron-withdrawing-injecting anchoring group have been developed and their photovoltaic performances in dye-sensitized solar cells (DSSCs) are investigated. The short-circuit photocurrent densities and solar energy-to-electricity conversion yields of DSSCs based on NI3-NI8 are greater than those for the conventional D-π-A dye sensitizers NI1 and NI2 with a carboxyl group as the electron-withdrawing anchoring group. The IR spectra of NI3-NI8 adsorbed on TiO(2) indicate the formation of coordinate bonds between the pyridine ring of dyes NI3-NI8 and the Lewis acid sites (exposed Ti(n+) cations) of the TiO(2) surface. This work demonstrates that the pyridine rings of D-π-A dye sensitizers that form a coordinate bond with the Lewis acid site of a TiO(2) surface are promising candidates as not only electron-withdrawing anchoring group but also electron-injecting group, rather than the carboxyl groups of the conventional D-π-A dye sensitizers that form an ester linkage with the Brønsted acid sites of the TiO(2) surface.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201101923DOI Listing

Publication Analysis

Top Keywords

anchoring group
16
pyridine ring
12
d-π-a dye
12
dye sensitizers
12
tio2 surface
12
dye-sensitized solar
8
solar cells
8
fluorescent dyes
8
ring electron-withdrawing-injecting
8
electron-withdrawing-injecting anchoring
8

Similar Publications

Ultrasound-Controllable Release of Carbon Monoxide in Multifunctional Polymer Coating for Synergetic Treatment of Catheter-Related Infections.

Adv Healthc Mater

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

Medical catheters are susceptible to biological contamination and pathogen invasion, leading to infection and inflammatory complications. The development of antimicrobial coatings for medical devices has emerged as a promising strategy. However, limited biological functionality and the incompatibility between bactericidal properties and biosafety remain great challenges.

View Article and Find Full Text PDF

Root caries present a significant challenge in dentistry. The unsatisfactory prognosis of restorative treatments requires novel, noninvasive preventive strategies. Here, we developed an amelogenin-derived peptide-modified poly(amidoamine), PAMAM-C11, to prevent demineralization in caries lesions and control periodontal destruction.

View Article and Find Full Text PDF

High Efficiency and Narrow Emissions in Deep-Blue Pt(II) Emitters in Organic Light-Emitting Diodes via Anchor-Shaped Substituent Design.

ACS Appl Mater Interfaces

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

In this study, a tetradentate Pt(II) complex designed to have -heterocyclic carbene ligands modified with an anchor-shaped 2,6-diisopropylphenyl (dip) group is described to enhance molecular rigidity for narrow emission and high efficiency. The tetradentate ligand with the dip group significantly hinders steric interactions and restricts π-conjugation from benzocarbene, leading to shallow lowest unoccupied molecular orbital levels and a consequent reduction in the triplet metal-to-ligand charge transfer character. These structural modifications result in narrow emission spectra and enhanced efficiency for blue organic light-emitting diodes (OLEDs) over wide doping concentration ranges.

View Article and Find Full Text PDF

Aims: It is unclear if a supportive bandage, removable splint, or walking cast offers the best outcome following low-risk ankle fractures in children. The aim of this study was to evaluate the feasibility of a randomized controlled trial to compare these treatments.

Methods: Children aged five to 15 years with low-risk ankle fractures were recruited to this feasibility trial from 1 February 2020 to 30 March 2023.

View Article and Find Full Text PDF

In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!