Here we describe the efficient synthesis of alkyl 4-arylsubstituted-6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylates and 4-arylsubstituted-4,7-dihydro-furo[3,4-b]pyridine-2,5(1H,3H)-diones via microwave-accelerated reaction of alkyl 4-arylsubstituted-2-methyl-6-oxo-1,4,5,6-tetrahydro-3-pyridinecarboxylates with the appropriate reagents. This eco-friendly approach to these valuable dihydropyridine derivatives does not involve the harsh or highly contaminating conditions common in classical heating and offers a reduction or even elimination of solvent use and recovery, simplification of the work-up procedures, facility of scale up, and low energy consumption, in addition to moderate to higher yields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264467PMC
http://dx.doi.org/10.3390/molecules16119620DOI Listing

Publication Analysis

Top Keywords

synthesis alkyl
8
eco-friendly methodology
4
methodology prepare
4
prepare n-heterocycles
4
n-heterocycles dihydropyridines
4
dihydropyridines microwave-assisted
4
microwave-assisted synthesis
4
alkyl 4-arylsubstituted-6-chloro-5-formyl-2-methyl-14-dihydropyridine-3-carboxylate
4
4-arylsubstituted-6-chloro-5-formyl-2-methyl-14-dihydropyridine-3-carboxylate 4-arylsubstituted-47-dihydrofuro[34-b]pyridine-251h3h-dione
4
4-arylsubstituted-47-dihydrofuro[34-b]pyridine-251h3h-dione describe
4

Similar Publications

Use of Biotin-Labeled Geranyl Pyrophosphate for Analysis of Ykt6 Geranylgeranylation.

Methods Mol Biol

January 2025

Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.

View Article and Find Full Text PDF

Aging is a complex process characterized by biological decline and a wide range of molecular alterations to cells, including changes to DNA methylation. In this study, we used a male-specific epigenetic marker of aging to build an epigenetic predictor that measures long-term androgen exposure in sheep and mice (median absolute error of 4.3 and 1.

View Article and Find Full Text PDF

Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).

View Article and Find Full Text PDF

A Non-Benzenoid Route to Thio-Oxybenzone Analogs: Superior UV Protection with Reduced Cytotoxicity.

Chem Asian J

January 2025

Indian Institute of Science Education and Research Thiruvananthapuram, chemistry, 2204, School of Chemistry, Vithura, 695551, Thiruvananthapuram, INDIA.

A one-pot methodology for the tandem acylation and oxidative aromatization of vinylogous thioesters to 2-acyl-5-(alkyl/arylthio)phenols is presented. Initially, cyclohexane-1,3-diones were converted to vinylogous thioesters through FeCl3-mediated thioenolization. This was followed by LiTMP-mediated acylation and DDQ-mediated aromatization, which resulted in the synthesis of sulphur derived oxybenzone analogs.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!