Herpes simplex encephalitis (HSE) is the most common sporadic viral encephalitis of childhood. Autosomal recessive (AR) UNC-93B and TLR3 deficiencies and autosomal dominant (AD) TLR3 and TRAF3 deficiencies underlie HSE in some children. We report here unrelated HSE children with AR or AD TRIF deficiency. The AR form of the disease was found to be due to a homozygous nonsense mutation that resulted in a complete absence of the TRIF protein. Both the TLR3- and the TRIF-dependent TLR4 signaling pathways were abolished. The AD form of disease was found to be due to a heterozygous missense mutation, resulting in a dysfunctional protein. In this form of the disease, the TLR3 signaling pathway was impaired, whereas the TRIF-dependent TLR4 pathway was unaffected. Both patients, however, showed reduced capacity to respond to stimulation of the DExD/H-box helicases pathway. To date, the TRIF-deficient patients with HSE described herein have suffered from no other infections. Moreover, as observed in patients with other genetic etiologies of HSE, clinical penetrance was found to be incomplete, as some HSV-1-infected TRIF-deficient relatives have not developed HSE. Our results provide what we believe to be the first description of human TRIF deficiency and a new genetic etiology for HSE. They suggest that the TRIF-dependent TLR4 and DExD/H-box helicase pathways are largely redundant in host defense. They further demonstrate the importance of TRIF for the TLR3-dependent production of antiviral IFNs in the CNS during primary infection with HSV-1 in childhood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226004 | PMC |
http://dx.doi.org/10.1172/JCI59259 | DOI Listing |
Acta Pharm Sin B
November 2024
Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China.
Rapid turnover of the intestinal epithelium is a critical strategy to balance the uptake of nutrients and defend against environmental insults, whereas inappropriate death promotes the spread of inflammation. PPAR is highly expressed in the small intestine and regulates the absorption of dietary lipids. However, as a key mediator of inflammation, the impact of intestinal PPAR signaling on cell death pathways is unknown.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China. Electronic address:
NLRP3 inflammasome activation is a pivotal area of research in innate immunity, yet the precise priming and activation signal remain unclear. In this study, we demonstrate that glycolysis inhibitor 2-Deoxy-D-glucose (2DG) triggers NLRP3-driven pyroptosis in human leukemia monocyte THP-1 cells by interfering glycosylation rather than glycolysis, which occurs independent of potassium efflux but requires the involvement of glycolysis rate-limiting enzyme PFKP. Using a CRISPR-Cas9 mediated large-scale screen, with 2DG as a new tool for probing NLRP3 activation, we identified that TLR2, rather than TLR4, initiates a rapid and robust priming signal for NLRP3 inflammasome activation.
View Article and Find Full Text PDFJ Inflamm (Lond)
November 2024
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
Inflammation can be an unwanted consequence or cause of debilitating diseases of infectious and non-infectious aetiologies. Current anti-inflammatory medications have several deficiencies including lack of specificity and undesirable side effects. Herein, the potential of non-ionic surfactant vesicles (NISV) comprised of monopalmityol glycerol, dicetyl phosphate and cholesterol) as an anti-inflammatory drug and their mode of action is investigated.
View Article and Find Full Text PDFBladder (San Franc)
October 2024
Lexington VA Health Care System, Research and Development, Lexington, KY, USA.
Background: Repeated intravesical activation of protease-activated receptor-4 (PAR4) serves as a model of persistent bladder hyperalgesia (BHA) in mice, which lasts several days after the final stimulus. Spinal macrophage migration inhibitory factor (MIF) and high mobility group box 1 (HMGB1) are critical mediators in the persistence of BHA.
Objective: We aimed to identify effective systemic treatments for persistent BHA using antagonists or transgenic deletions.
Exp Cell Res
November 2024
School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!