Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A high-performance bioanode based on the composite of carbon nanotubes (CNTs)-immobilized mediator and silk film (SF)-immobilized glucose oxidase (GOD) was developed for glucose/O(2) biofuel cell (BFC). Ferrocenecarboxaldehyde (Fc) was used as the mediator and covalently immobilized on the ethylenediamine (EDA)-functionalized CNTs (CNTs-EDA). GOD was cross-linked on the SF with glutaraldehyde (GA) as the cross-linking agent. The resulting electrode (CNTs-Fc/SF-GOD/glassy carbon (GC) electrode) exhibited good catalytic activity towards glucose oxidation and excellent stability. For the assembled glucose/O(2) BFC with the CNTs-Fc/SF-GOD/GC electrode as the bioanode and a commercial E-TEK Pt/C modified GC electrode as the cathode, the open circuit potential is 0.48 V and the maximum power density of 50.70 μW cm(-2) can be achieved at 0.15 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2011.10.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!