Standing waves play a significant role in the appearance of cavitation phenomena. The goal of this study was to investigate the effect that the relation between standing and propagating waves in a focused field has on acoustic bubble cloud formation. Measurements of the cavitation signals were performed on five different configurations of a hemispheric phased array transducer (230 kHz) representing a wide range of relations between propagating and standing waves. The results show that configurations with a larger propagating component induce bubble clouds at lower pressures than configurations with a larger standing component.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.08.002 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Pain Medicine Section, Anesthesiology Dept, Hospital Clinic de Barcelona, Barcelona, Spain.
Background: Multidisciplinary programs are the first recommendation for non-specific chronic low-back pain, but implementing this type of program is complicated to get up and running. The primary aim of this study was to assess the feasibility and appropriateness of the PAINDOC multidisciplinary program for subjects with chronic low-back pain. The secondary objectives were to evaluate the decrease in pain intensity, pain-related disability and pain catastrophizing, as well as the improvement in quality of life with this program.
View Article and Find Full Text PDFThe eastern equatorial Atlantic hosts a productive marine ecosystem that depends on upward supply of nitrate, the primary limiting nutrient in this region. The annual productivity peak, indicated by elevated surface chlorophyll levels, occurs in the Northern Hemisphere summer, roughly coinciding with strengthened easterly winds. For enhanced productivity in the equatorial Atlantic, nitrate-rich water must rise into the turbulent layer above the Equatorial Undercurrent.
View Article and Find Full Text PDFNat Commun
January 2025
Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA.
Particle manipulation plays a pivotal role in scientific and technological domains such as materials science, physics, and the life sciences. Here, we present a dynamically reconfigurable acoustofluidic metasurface that enables precise trapping and positioning of microscale particles in fluidic environments. By harnessing acoustic-structure interaction in a passive membrane resonator array, we generate localized standing acoustic waves that can be reconfigured in real-time.
View Article and Find Full Text PDFLab Chip
January 2025
Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
The utilization of acoustic fields offers a contactless approach for microparticle manipulation in a miniaturized system, and plays a significant role in medicine, biology, chemistry, and engineering. Due to the acoustic radiation force arising from the scattering of the acoustic waves, small particles in the Rayleigh scattering range can be trapped, whilst their impact on the acoustic field is negligible. Manipulating larger particles in the Mie scattering regime is challenging due to the diverse scattering modes, which impacts the local acoustic field.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!