Acoustic radiation force has been proposed as a mechanism to enhance microbubble concentration for therapeutic and molecular imaging applications. It is hypothesized that once microbubbles are localized, bursting them with acoustic pressure could result in local drug delivery. It is known that low-frequency, high-amplitude acoustic energy combined with cavitation nuclei can result in bioeffects. However, little is known about the bioeffects potential of acoustic parameters involved in radiation force and microbubble destruction pulse sequences applied at higher frequencies. In this pilot study, rat kidneys are exposed to high-duty cycle, low-amplitude pulse sequences known to cause substantial bubble translation due to radiation force, as well as high-amplitude short pulse sequences known to cause microbubble destruction. Both studies are performed at 7 MHz on a clinical ultrasound system, and implemented in three-dimensions (3-D) for entire kidney exposure. Analysis of biomarkers of renal injury and renal histopathology indicate that there was no significant renal damage due to these ultrasound parameters in conjunction with microbubbles within the study group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822907 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.10.001 | DOI Listing |
J Magn Reson
December 2024
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland. Electronic address:
Pseudo-3D HSQC provides an alternative and easy way to record and analyze quantitative HSQC-data. In the original time-zero extrapolated H-C HSQC (HSQC), three separate 2D constant-time (CT) HSQC-experiments (HSQC, i = 1-3) are acquired, where either 1,2 or 3 consecutive CT-HSQC-propagators are repeated in each pulse sequence, and the 2D integral data from the three 2D experiments is analyzed via linear regression. In the presented pseudo-3D HSQC, HSQC is one of the dimensions and all data is contained within one dataset, which is recorded in interleaved manner by acquiring the same t-value for each HSQC-point before t-incrementation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.
View Article and Find Full Text PDFJ Gastrointest Surg
December 2024
Department of Radiation Oncology, Institute of Liver and Biliary Sciences, Delhi, India. Electronic address:
Background: India has a high incidence of gallstones, which can cause chronic inflammation and increase the risk of gallbladder cancer. Understanding the age and composition of gallstones can provide insights into their formation and growth. This study used ¹⁴C dating, FTIR, and metagenome analysis to explore the natural history, deposition rate, and microbial/chemical composition of gallstones.
View Article and Find Full Text PDFInt J Food Microbiol
December 2024
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China. Electronic address:
Salmonella is one of the most common foodborne pathogens. Antimicrobial-resistant Salmonella isolates, especially those resistant to colistin, pose a significant threat to public health worldwide. However, data about the prevalence of mcr-positive Salmonella in animals was few and the dissemination of mcr-positive Salmonella from animals to food, especially eggs, has not been fully addressed.
View Article and Find Full Text PDFIntensive Care Med Exp
December 2024
Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.
Background: Identifying spontaneous circulation during cardiopulmonary resuscitation (CPR) is challenging. Current methods, which involve intermittent and time-consuming pulse checks, necessitate pauses in chest compressions. This issue is problematic in both in-hospital cardiac arrest and out-of-hospital cardiac arrest situations, where resources for identifying circulation during CPR may be limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!