Larval and adult sea lampreys (Petromyzon marinus) release bile salts and acids into the surrounding aquatic environment. Some of these bile salts and acids, such as petromyzonol sulfate (PZS), 3-keto petromyzonol sulfate (3k PZS), petromyzonamine disulfate (PADS), petromyzosterol disulfate (PSDS), and 3-keto allocholic acid (3k ACA), may function as pheromones. To examine the release and distribution patterns of these metabolites, which this study has termed bile acid derivatives, we developed a novel UHPLC-MS/MS method that was characterized by simple sample preparation, baseline separation, and short analysis time for all studied compounds. These five analytes were separated in 7 min using a reversed-phase C18 column containing 1.7 μm particles and a gradient elution at pH 8.9. Once separated, the analytes were subjected to electrospray ionization-mass spectrometry (negative ion mode) and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using the multiple reaction monitoring (MRM) mode. Deuterated 3k PZS ([(2)H(5)]3k PZS) was added as the internal standard (IS) to the sample prior to solid phase extraction (SPE). Among the three types of SPE sorbent tested, mixed-mode cation-exchange and reversed-phase sorbent for bases (MAX) and acids (MCX), and reversed-phase C18 sorbent (Sep-pak), the best recoveries (84.1-99.7%) were obtained with MCX cartridges. The calibration curves of all five analytes were linear between 0.15 and 1200 ng/mL, with R(2)≥0.9997. This method had a precision of relative standard deviation (RSD) ≤9.9% and an accuracy of deviation (DEV) ≥92.5%. The developed method was successfully used to quantify bile acid derivatives found in streams where lampreys spawn (SD<1.4) and water conditioned with male sea lampreys (SD<4.8). Utilizing this method provides a routine analysis of lamprey bile acid derivatives and may prove useful for sea lamprey population estimates in future studies and applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2011.10.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!