Objectives: Human oral mucosal epithelial cells derived from 7 healthy volunteer donors were cultured in a clean room in a cell-processing center (CPC) according to good manufacturing practice guidelines. Cell culture and fabricated transplantable epithelial cell sheets were validated for treating ulcers after endoscopic mucosal dissection.
Methods: The clonal growth and morphology of the human oral mucosal epithelial cells seeded on temperature-responsive surfaces were observed. During the cultivation, sterilization tests were performed to validate the environment in the CPC. To validate the purity and morphology of fabricated epithelial cell sheets, cell sheets harvested from temperature-responsive surfaces by temperature reduction were examined by histology and flow cytometry.
Results: Human oral mucosal epithelial cells were successfully cultured and harvested as continuous cell sheets from temperature-responsive culture inserts without any animal-derived materials. During the cultivations, the sterile environment in the CPC was confirmed. The results of histological and flow cytometry analysis showed the high reproducibility of stratification and the purity of the fabricated human oral mucosal epithelial cell sheets.
Conclusions: The method for fabricating epithelial cell sheets shown in this study was suitable for the validation for clinical trials and suggested usability of the fabricated cell sheets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000322575 | DOI Listing |
Mycetoma is a neglected tropical disease that predominantly affects individuals in low socioeconomic strata, primarily in tropical and subtropical regions. This case report describes a 20-year-old male student from Bahdo City, Somalia, who presented with a persistent cervical mass following a history of trauma. The patient exhibited vital signs within normal limits, and imaging studies, including ultrasound and computed tomography, revealed well-defined cystic masses.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Even though major improvements have been made in the treatment of myeloma, the majority of patients eventually relapse or progress. Patients with multiple myeloma who relapse after initial high-dose chemotherapy with autologous stem cells have a median progression free survival up to 2-3 years, depending on risk factors such as previous remission duration. In recent years, growing evidence has suggested that allogeneic stem cell transplantation could be a promising treatment option for patients with relapsed or progressed multiple myeloma.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!