Neutrophils have recently been shown to release DNA-based extracellular traps that contribute to microbicidal killing and have also been implicated in autoimmunity. The role of neutrophil extracellular trap (NET) formation in the host response to nonbacterial pathogens has received much less attention. Here, we show that the protozoan pathogen Toxoplasma gondii elicits the production of NETs from human and mouse neutrophils. Tachyzoites of each of the three major parasite strain types were efficiently entrapped within NETs, resulting in decreased parasite viability. We also show that Toxoplasma activates a MEK-extracellular signal-regulated kinase (ERK) pathway in neutrophils and that the inhibition of this pathway leads to decreased NET formation. To determine if Toxoplasma induced NET formation in vivo, we employed a mouse intranasal infection model. We found that the administration of tachyzoites by this route induced a rapid tissue recruitment of neutrophils with evidence of extracellular DNA release. Taken together, these data indicate a role for NETs in the host innate response to protozoan infection. We propose that NET formation limits infection by direct microbicidal effects on Toxoplasma as well as by interfering with the ability of the parasite to invade target host cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264325PMC
http://dx.doi.org/10.1128/IAI.05730-11DOI Listing

Publication Analysis

Top Keywords

net formation
16
toxoplasma gondii
8
human mouse
8
neutrophil extracellular
8
extracellular traps
8
toxoplasma
5
gondii triggers
4
triggers release
4
release human
4
mouse neutrophil
4

Similar Publications

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

Constructing fecal-derived electrocatalysts for CO upcycling: simultaneously tackling waste and carbon emissions.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).

View Article and Find Full Text PDF

Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.

View Article and Find Full Text PDF

Objective: This study aims to elucidate the primary signaling communication among papillary craniopharyngioma (PCP) tumor cells.

Methods: Five samples of PCP were utilized for single-cell RNA sequencing. The most relevant ligand and receptor interactions among different cells were calculated using the CellChat package in R software.

View Article and Find Full Text PDF

Prey depletion, interspecific competition, and the energetics of hunting in endangered African wild dogs, .

Proc Natl Acad Sci U S A

February 2025

Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales SA2 8PP, United Kingdom.

Large herbivores are in decline in much of the world, including sub-Saharan Africa, and true apex carnivores like the lion () decline in parallel with their prey. As a consequence, competitively subordinate carnivores like the African wild dog () are simultaneously experiencing a costly reduction in resources and a beneficial reduction in dominant competitors. The net effect is not intuitively obvious, but wild dogs' density, survival, and reproduction are all low in areas that are strongly affected by prey depletion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!