Surface active cellulose particles have been prepared for use as foam stabilizing agents in foods. Various sources of cellulose were broken down by combinations of milling, acid dissolution and treatment with cellulase. The most efficient and simple method was hammer and freezer milling of dry crystalline α-cellulose (Tencel). The resultant Tencel particles were made partially hydrophobic through precipitation of ethyl cellulose (EC) onto them in acetone-water dispersions. The optimum ratio of EC to cellulose and the optimum solids concentration (C(x)) at which to form the complexes were 1:1 and C(x) ≈ 1 wt %, respectively. Complexes combined at low concentrations (e.g., C(x) ≈ 0.1 wt %) with caseins or whey proteins gave significant improvements in stability of foams and bubbles to coalescence and disproportionation compared to either component alone. As such, the complexes could be a useful ingredient in improving the quality of various food foams.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf203501pDOI Listing

Publication Analysis

Top Keywords

cellulose
5
preparation characterization
4
characterization foam-stabilizing
4
foam-stabilizing properties
4
properties cellulose-ethyl
4
cellulose-ethyl cellulose
4
complexes
4
cellulose complexes
4
complexes foods
4
foods surface
4

Similar Publications

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.

View Article and Find Full Text PDF

Objectives: For designing a suitable hydrogel, two crosslinked Alginate/ Carboxymethyl cellulose (Alg/CMC) hydrogel, using calcium chloride (Ca) and glutaraldehyde (GA) as crosslinking agents were synthesized and compared.

Materials And Methods: All samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Blood compatibility (BC), Blood clotting index (BCI), weight loss (WL), water absorption (WA), pH, and Electrochemical Impedance Spectroscopy (EIS). Cell viability and cell migration were investigated using the MTT assay and the wound scratch test, respectively.

View Article and Find Full Text PDF

Low-voltage electrostatic field (LP) enhances the freezing quality of food by increasing water supercooling and improving ice crystal morphology. This study explored the effects of LP treatment on the storage quality of square bamboo shoots using physicochemical, gas chromatography-mass spectrometry, and metabolomics methods. Results showed that with prolonged storage, the LP-treated group had lower activities of peroxidase, phenylalanine ammonia-lyase, and lower levels of malondialdehyde, cellulose, and lignin compared to the control group, while superoxide dismutase and catalase activities and shear force values were higher.

View Article and Find Full Text PDF

In this study, we prepared a new multi-functional intelligent hydrogel preservation film using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), chitosan (CS), and anthocyanin (Anth) as raw materials. The physicochemicals of the hydrogel preservation film, and its role in monitoring the freshness and freshness of salmon was evaluated. The results showed that the monomers were crosslinked by hydrogen, ester bonds, and electrostatic interactions in the hydrogel film, and there were three-dimensional pores in the hydrogel film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!