In Photosystem 1 (PS1), phylloquinone (PhQ) acts as a secondary electron acceptor from chlorophyll ec(3) and also as an electron donor to the iron-sulfur cluster F(X). PS1 possesses two virtually equivalent branches of electron transfer (ET) cofactors from P(700) to F(X), and the lifetime of the semiquinone intermediate displays biphasic kinetics, reflecting ET along the two different branches. PhQ in PS1 serves only as an intermediate in ET and is not normally fully reduced to the quinol form. This is in contrast to PS2, in which plastoquinone (PQ) is doubly reduced to plastoquinol (PQH(2)) as the terminal electron acceptor. We purified PS1 particles from the menD1 mutant of Chlamydomonas reinhardtii that cannot synthesize PhQ, resulting in replacement of PhQ by PQ in the quinone-binding pocket. The magnitude of the stable flash-induced P(700)(+) signal of menD1 PS1, but not wild-type PS1, decreased during a train of laser flashes, as it was replaced by a ~30 ns back-reaction from the preceding radical pair (P(700)(+)A(0)(-)). We show that this process of photoinactivation is due to double reduction of PQ in the menD1 PS1 and have characterized the process. It is accelerated at lower pH, consistent with a rate-limiting protonation step. Moreover, a point mutation (PsaA-L722T) in the PhQ(A) site that accelerates ET to F(X) ~2-fold, likely by weakening the sole H-bond to PhQ(A), also accelerates the photoinactivation process. The addition of exogenous PhQ can restore activity to photoinactivated PS1 and confer resistance to further photoinactivation. This process also occurs with PS1 purified from the menB PhQ biosynthesis mutant of Synechocystis PCC 6803, demonstrating that it is a general phenomenon in both prokaryotic and eukaryotic PS1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi201131r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!