The serine protease inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) is associated with the pathophysiology of several diseases, including cancer and cardiovascular disease. The extracellular matrix protein vitronectin increases at sites of vessel injury and is also present in fibrin clots. Integrins present on the cell surface bind to vitronectin and anchor the cell to the extracellular matrix. However, the binding of PAI-1 to vitronectin prevents this interaction, thereby decreasing both cell adhesion and migration. We previously developed PAI-1-specific RNA aptamers that bind to (or in the vicinity of) the vitronectin binding site of PAI-1. These aptamers prevented cancer cells from detaching from vitronectin in the presence of PAI-1, resulting in an increase in cell adhesion. In the current study, we used in vitro assays to investigate the effects that these aptamers have on human aortic smooth muscle cell (HASMC) and human umbilical vein endothelial cell (HUVEC) migration, adhesion, and proliferation. The PAI-1-specific aptamers (SM20 and WT15) increased attachment of HASMCs and HUVECs to vitronectin in the presence of PAI-1 in a dose-dependent manner. Whereas PAI-1 significantly inhibited cell migration through its interaction with vitronectin, both SM20 and WT15 restored cell migration. The PAI-1 vitronectin binding mutant (PAI-1AK) did not facilitate cell detachment or have an effect on cell migration. The effect on cell proliferation was minimal. Additionally, both SM20 and WT15 promoted tube formation on matrigel that was supplemented with vitronectin, thereby reversing the PAI-1's inhibition of tube formation. Collectively, results from this study show that SM20 and WT15 bind to the PAI-1's vitronectin binding site and interfere with its effect on cell migration, adhesion, and tube formation. By promoting smooth muscle and endothelial cell migration, these aptamers can potentially eliminate the adverse effects of elevated PAI-1 levels in the pathogenesis of vascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279719 | PMC |
http://dx.doi.org/10.1089/nat.2011.0320 | DOI Listing |
Biomacromolecules
January 2025
Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Internal Medicine, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia.
Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Cell Biology, School of Life Sciences, Central South University;
The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!