ZnO nanorods were grown on spin-coated ZnO seed layers by hydrothermal method. The ZnO nanorods were grown with various precursor concentrations ranging from 0.01 to 0.3 M. Field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the structural and optical properties of the ZnO nanorods. The average diameter and length of the ZnO nanorods is increased as the precursor concentration increased from 0.01 to 0.3 M. From XRD, the intensity of ZnO (002) peak is increased and full width at half maximum (FWHM) of ZnO (002) decreased as the precursor concentration increased. The FWHM of near-band-edge emission (NBE) decreased and intensity ratio of the NBE to the deep-level emission (DLE) increased as the precursor concentration increased which indicated the optical property is improved. The DLE is red-shifted from yellow- to red-emission and its intensity is increased as the annealing temperature increased due to thermal diffusion process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.4783 | DOI Listing |
Bioelectrochemistry
January 2025
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:
Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.
View Article and Find Full Text PDFACS Omega
December 2024
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K.
ACS Sens
January 2025
Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy.
Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.
View Article and Find Full Text PDFSci Rep
December 2024
Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!