AI Article Synopsis

  • A carbon-supported palladium (Pd) electrocatalyst is created using an enhanced aqueous impregnation method with HCHO as a reducing agent and HCl as an acidic promoter.
  • The study examines how solution pH affects the zeta potential of both Pd particles and carbon support, leading to uniform dispersion of Pd without aggregation.
  • Results show that at a pH of 4.27, the catalyst has a mean particle diameter of 3.2 nm, and it demonstrates a higher electrochemical active surface area and stability compared to commercial 40 wt.% Pd/C during formic acid oxidation.

Article Abstract

Carbon-supported Pd electrocatalyst is prepared by an improved aqueous impregnation method applying a reducing agent of HCHO and an acidic sedimentation promoter of HCl. We investigate the effect of a solution pH on the zeta potential of both Pd particles and carbon support. The opposite sign of zeta potential results in uniform dispersion of Pd on carbon surface without aggregation problem. TEM analysis shows that optimal solution pH of 4.27 adjusted by NaOH provides a mean particle diameter of 3.2 nm with narrow size distribution. Cyclic voltammograms indicate that home-made Pd/C catalyst exhibits significantly higher electrochemical active surface area and better stability compared with commercial 40 wt.% Pd/C in a formic acid oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4829DOI Listing

Publication Analysis

Top Keywords

formic acid
8
acid oxidation
8
zeta potential
8
particle size
4
size control
4
control pd/c
4
pd/c improved
4
improved electrocatalytic
4
electrocatalytic activity
4
activity formic
4

Similar Publications

Weakening Pd─O Bonds by an Amorphous Pd Layer to Promote Electrocatalysis.

Small

January 2025

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.

View Article and Find Full Text PDF

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.

Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), an extremely contagious illness, has posed enormous challenges to healthcare systems around the world. Although the evidence on COVID-19 management is growing, antiviral medication is still the first line of treatment. Therefore, it is critical that effective, safe, and tolerable antivirals be available to treat early COVID-19 and stop its progression.

View Article and Find Full Text PDF

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!