Gallium tin oxide composite (GTO) thin films were prepared by electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD). The organometallics of tetramethlytin and trimethylgallium were used for precursors of gallium and tin, respectively. X-ray diffraction (XRD) characterization indicated that the gallium tin oxide composite thin films show the nanopolycrystalline of tetragonal rutile structure. Hall measurement indicated that the Ga/[O+Sn] mole ratio play an important role to determine the electrical properties of gallium tin composite oxide thin films. n-type conducting film obtained Ga/[O+Sn] mole ratio of 0.05 exhibited the lowest electrical resistivity of 1.21 x 10(-3) ohms cm. In our experimental range, the optimized carrier concentration of 3.71 x 10(18) cm(-3) was prepared at the Ga/[O+Sn] mole ratio of 0.35.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.4840 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium-gallium-zinc oxide (IGZO) with a low dark current and tin sulfide (SnS) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnS/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Mechanical and Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.
Solid-state Li-ion batteries are attracting attention for their enhanced safety features, higher energy density, and broader operational temperature range compared to systems based on liquid electrolytes. However, current solid-state Li-ion batteries face performance challenges, such as suboptimal cycling and poor rate capabilities, often due to inadequate interfacial contact between the solid electrolyte and electrodes. To address this issue, we incorporated a gallium-indium (Ga-In) liquid metal as the anode in a solid-state Li-ion battery setup, employing LiPSCl as the solid electrolyte.
View Article and Find Full Text PDFNano Lett
December 2024
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
Facile phase transitions and electrical degradation of amorphous oxide semiconductors due to a high thermal budget have significantly limited their dynamic random-access memory (DRAM) applications, which require high thermal stability at temperatures over 600 °C. In this paper, we report an amorphous In-Sn-Ga-O (ITGO) semiconductor fabricated via atomic layer deposition, which exhibits high-temperature (∼700 °C) phase stability with moderate electrical properties. The optimal Sn-rich ITGO composition (In/Sn/Ga = 25:58:17 at.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
As electronic circuit integration intensifies, there is a rising demand for dielectric insulators that provide both superior insulation and high dielectric constants. This study focuses on developing high-k dielectric insulators by controlling the phase of the HfZrO (HZO) film with additional doping, utilizing yttrium (Y), tantalum (Ta), gallium (Ga), silicon (Si), and aluminum (Al) as dopants. Doping changes the ratio of tetragonal to monoclinic phases in doped HZO films, and Y-doped HZO (Y:HZO) films specifically exhibit a high tetragonal phase ratio and a dielectric constant of 40.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
Metal oxide core-shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence of the shell material on the transportation of the electric charge carriers along these structures is still not very well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!