In this study, nanobranched TiO2 nanofibers and silver loaded nanobranched TiO2 nanofibers were prepared by electrospinning technique followed by TiCl4 aqueous solution treatment and silver photodeposition method. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the products. X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted on the samples to study their chemical composition as well as crystallographic structure. The photocatalytic activities of these produced nanofibers were examined with two organic dyes, methylene blue and methyl orange, under ultraviolet (UV) light irradiation. The effect of nanobranches and silver modification on TiO2 nanofibers was revealed in the photocatalysis process. The photocatalytic degradation rates of silver loaded on nanobranched TiO2 nanofibers were 1.6 and 1.7 times as that of pure TiO2 nanofibers in the presence of methylene blue and methyl orange, respectively, which indicated silver nanoparticles combined nanobranches modified on the surface of TiO2 nanofibers could enhance the photocatalytic ability.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4227DOI Listing

Publication Analysis

Top Keywords

tio2 nanofibers
28
nanobranched tio2
16
silver nanoparticles
8
nanofibers
8
silver loaded
8
loaded nanobranched
8
electron microscopy
8
methylene blue
8
blue methyl
8
methyl orange
8

Similar Publications

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

Highly flexible free-standing bacterial cellulose-based filter membrane with tunable wettability for high-performance water purification.

Int J Biol Macromol

December 2024

Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:

Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.

View Article and Find Full Text PDF

Fluorescence spectroscopy employed to compute the antibacterial potential of pure ZnO and Titania (TiO) loaded ZnO (TiO: 2%, 4%, 6%, and 8%) electrospun nanofibers. The study of electrospun nanofibers followed by their structural, morphological and antibacterial properties has been revealed through fluorescence spectroscopy. X-ray diffraction (XRD) analysis of nanofibers calcinated at 600 °C revealed the presence of polycrystalline wurtzite hexagonal crystallographic planes of ZnO with preferred orientation along (101) direction.

View Article and Find Full Text PDF

Superhydrophobic Surfaces as a Potential Skin Coating to Prevent Jellyfish Stings: Inhibition and Anti-Tentacle Adhesion in Nematocysts of Jellyfish .

Materials (Basel)

December 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits nematocyst adhesion, therefore preventing jellyfish stings. We investigated wettability and nematocyst adhesion on four different surfaces: gelatin, polydimethylsiloxane (PDMS), dodecyl trichlorosilane (DTS)-modified SiO, and perfluorooctane triethoxysilane (PFOTS)-modified TiO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!