Transfer entropy (TE) is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to probe neural interactions at only a single time delay and at a message length of only a single time bin. This is problematic, as synaptic delays between cortical neurons, for example, range from one to tens of milliseconds. In addition, neurons produce bursts of spikes spanning multiple time bins. To address these issues, here we introduce a free software package that allows TE to be measured at multiple delays and message lengths. To assess performance, we applied these extensions of TE to a spiking cortical network model (Izhikevich, 2006) with known connectivity and a range of synaptic delays. For comparison, we also investigated single-delay TE, at a message length of one bin (D1TE), and cross-correlation (CC) methods. We found that D1TE could identify 36% of true connections when evaluated at a false positive rate of 1%. For extended versions of TE, this dramatically improved to 73% of true connections. In addition, the connections correctly identified by extended versions of TE accounted for 85% of the total synaptic weight in the network. Cross correlation methods generally performed more poorly than extended TE, but were useful when data length was short. A computational performance analysis demonstrated that the algorithm for extended TE, when used on currently available desktop computers, could extract effective connectivity from 1 hr recordings containing 200 neurons in ∼5 min. We conclude that extending TE to multiple delays and message lengths improves its ability to assess effective connectivity between spiking neurons. These extensions to TE soon could become practical tools for experimentalists who record hundreds of spiking neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216957 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027431 | PLOS |
JMIR Form Res
January 2025
Early Intervention in Psychosis Advisory Unit for South-East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
Background: Shared decision-making between clinicians and service users is crucial in mental health care. One significant barrier to achieving this goal is the lack of user-centered services. Integrating digital tools into mental health services holds promise for addressing some of these challenges.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.
View Article and Find Full Text PDFPLoS One
January 2025
Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
Topological indices are crucial tools for predicting the physicochemical and biological features of different drugs. They are numerical values obtained from the structure of chemical molecules. These indices, particularly the degree-based TIs are a useful tools for evaluating the connection between a compound's structure and its attributes.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Clinical Neuropsychology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland.
Background: Metabolic-bariatric surgery (MBS) transcends weight loss and offers wide-ranging health benefits, including positive effects on brain function. However, the mechanisms behind these effects remain unclear, particularly in the context of significant postoperative changes in the inflammatory profile characteristic of MBS. Understanding how inflammation influences postoperative brain function can enhance our decision-making on patient eligibility for MBS and create new opportunities to improve the outcomes of this popular treatment.
View Article and Find Full Text PDFInteragency teams are considered an evidence-based change practice, but there is a paucity of research examining them in criminal justice (CJ) and behavioral health (BH) reform contexts. This study draws on qualitative interviews ( = 52) and survey data ( = 791) from BH and CJ leaders across the United States to examine who is on them, what they do, and effective strategies for building and sustaining them. Findings indicated that CJ-BH interagency teams often incorporate agencies from a range of CJ, BH, social service, and health agencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!