Synthesis and characterization of silver/silicon-cosubstituted nanohydroxyapatite.

J Biomed Mater Res B Appl Biomater

Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.

Published: January 2012

Favorable cell-material interaction and the absence of undesirable reaction from the host body defence system play a critical role in determining the success and long-term survival of the implants. Substitution of various elements into hydroxyapatite (HA) has been done to alter its chemical composition, thereby mimicking that of the bone mineral. In this study, a cosubstituted nanosized apatite (Ag/Si-HA) containing Ag (0.3 wt %) and Si (0.8 wt %) was synthesized by an aqueous precipitation technique. The synthesized Ag/Si-HA displayed a rod-like morphology of dimensions ~50 nm in length and ~15 nm in width, as observed from the transmission electron microscope image. With an increase in temperature, the aspect ratio of nanosized Ag/Si-HA decreased, whilst the size increased. Autoclaving was used to achieve sufficient crystallinity while maintaining the rod-like morphology and size that were comparable to that of the bone apatite. A pure Ag/Si-HA was produced without any undesirable secondary phases, as evidenced from the X-ray diffraction and thermal gravimetric results. The Ag/Si cosubstitution affected the lattice cell parameters, in particularly the a- and c- axes which further led to an expansion of the unit cell volume. In addition, the relative intensity of the hydroxyl vibrational bands was reduced. These results demonstrated that a stable phase-pure Ag/Si-HA was produced using an aqueous precipitation reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.31951DOI Listing

Publication Analysis

Top Keywords

aqueous precipitation
8
rod-like morphology
8
ag/si-ha produced
8
ag/si-ha
5
synthesis characterization
4
characterization silver/silicon-cosubstituted
4
silver/silicon-cosubstituted nanohydroxyapatite
4
nanohydroxyapatite favorable
4
favorable cell-material
4
cell-material interaction
4

Similar Publications

Efficient removal of Sb(III) from aqueous solution using TiO precipitated onto waste herb-residue biochar.

Environ Technol

December 2024

College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.

Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.

View Article and Find Full Text PDF

Manipulating Interphase Chemistry for Aqueous Zn Stabilization: The Role of Supersaturation.

Angew Chem Int Ed Engl

December 2024

Guangdong University of Technology, school of chemical engineering and light industry, Panyu, Guangzhou University City Outer Ring Road No. 100, 510006, Gaungzhou, CHINA.

The limited cycling durability of Zn anode, attributed to the absence of a robust electrolyte-derived solid electrolyte interphase (SEI), remains the bottleneck for the practical deployment of aqueous zinc batteries. Herein, we highlight the role of local supersaturation in governing the fundamental crystallization chemistry of Zn4SO4(OH)6·xH2O (ZSH) and propose a subtle supersaturation-controlled morphology strategy to tailor the interphase chemistry of Zn anode. By judiciously creating local high-supersaturation environment with organic caprolactam to manipulate the precipitation manner of zinc sulfate hydroxide (ZSH), lattice-lattice matched heterogeneous nucleation of ZSH (001) and Zn (002) is realized in aqueous ZnSO4, producing a dense, pseudo-coincidence interface capable of functioning as decent SEI.

View Article and Find Full Text PDF

In this study, we have investigated the surface-enhanced Raman scattering (SERS) spectra of myoglobin on silver substrates with different morphology. The aim was to determine the optimal parameters of analyte and substrate preparation for obtaining of high-amplitude SERS spectra of proteins. It is shown that not only the morphology of the silver film, but also the method of analyte molecules deposition on the SERS substrate plays an important role.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!