A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Label-free analysis in chip electrophoresis applying deep UV fluorescence lifetime detection. | LitMetric

Herein we introduce deep UV fluorescence lifetime detection in microfluidics applied for label-free detection and identification of various aromatic analytes in chip electrophoresis. For this purpose, a frequency quadrupled Nd:YAG (neodymium-doped yttrium aluminum garnet) picosecond laser at 266  nm was incorporated into an inverse fluorescence microscope setup with time-correlated single photon counting detection. This allowed recording of photon timing with sub-nanosecond precision. Thereby fluorescence decay curves are gathered on-the-fly and average lifetimes can be determined for each substance in the electropherogram. The aromatic compounds serotonin, propranolol, 3-phenoxy-1,2-propanediol and tryptophan were electrophoretically separated using a fused-silica microchip. Average lifetimes were independently determined for each compound via bi-exponential tail fitting. Time-correlated single photon counting also allows the discrimination of background fluorescence in the time domain. This results in improved signal-to-noise-ratios as demonstrated for the above model analytes. Microchip electrophoretic separations with fluorescence lifetime detection were also performed with a protein mixture containing lysozyme, trypsinogen and chymotrypsinogen emphasizing the potential for biopolymer analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201100204DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
12
lifetime detection
12
chip electrophoresis
8
deep fluorescence
8
time-correlated single
8
single photon
8
photon counting
8
average lifetimes
8
fluorescence
6
detection
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!