p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353779 | PMC |
http://dx.doi.org/10.1152/ajpheart.00739.2011 | DOI Listing |
CNS Neurosci Ther
November 2024
Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
Aims: Patients with glioblastoma multiforme (GBM) do not benefit from current cancer treatments, and their prognosis is dismal. This study aimed to investigate the potential synergistic effects of TS-2021, a third-generation oncolytic adenovirus, combined with the PARP inhibitor olaparib in GBM.
Methods: TS-2021's impact on p66shc-induced apoptosis, DNA damage response, and poly (ADP-ribose) polymerase (PARP) activation was evaluated in GBM cells.
Transl Gastroenterol Hepatol
October 2024
Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Korean J Physiol Pharmacol
January 2025
Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 34134, Korea.
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN.
View Article and Find Full Text PDFCancers (Basel)
September 2024
Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland.
This work presents a comprehensive evaluation of the role of p66Shc protein in mitochondrial physiology in MDA-MB-231 breast cancer cells. The use of human breast cancer cell line MDA-MB-231 and its genetically modified clones (obtained with the use of the CRISPR-Cas9 technique), expressing different levels of p66Shc protein, allowed us to demonstrate how the p66Shc protein affects mitochondrial metabolism of human breast cancer cells. Changes in the level of p66Shc (its overexpression, and overexpressing of its Serine 36-mutated version, as well as the knockout of p66Shc) exert different effects in breast cancer cells.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India.
Redundancy of cancer cells towards ROS-mediated apoptosis despite expressing proline-rich p66shc abundantly needs to be investigated properly. P66shc, an adapter protein, is indispensable both for initiating ROS-mediated apoptosis and subsequent ROS generation through Rac-1 activation. P66shc gets phosphorylated at Ser-36 that triggers its translocation to the mitochondria and subsequent release of Cytochrome c in response to oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!