Sexual plant reproduction requires multiple pollen-pistil interactions from the stigma (pollen adhesion, hydration, and germination) to the ovary (fertilization). Understanding the factors that regulate pollen tube growth is critical to understanding the processes essential to sexual reproduction. Many pollen tube growth assays (PTGAs) have shorter and slower pollen tube growth when compared to pollen tube growth through the style. The identification and study of factors that regulate pollen tube growth have been impeded by a lack of an efficient and reproducible PTGA. The objective of this research is to develop a robust assay for Nicotiana tabacum pollen tube growth in an environment that supports sustained and normal growth yet is amenable to testing the effects of specific factors. In this paper, we introduce a novel PTGA, which uses pistils from N. tabacum that lack a mature transmitting tract (TT) due to tissue-specific ablation. The TT-ablated style supports normal pollen tube growth and the hollow structure of the style allows modification of the growth environment by direct injection of test material. This PTGA is robust and allows for rapid and accurate measurement of pollen tube length and pollen tube morphology, supporting pollen tube growth from 20 to 35°C and at pH ranging from 4.8 to 7.6. Use of the ablated style for a PTGA is a novel method for the culture of pollen tubes with sustained growth in vivo while permitting the application of treatments to the growing pollen tubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00497-011-0177-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!