First-principles molecular dynamics calculations of the structural, elastic, vibrational and electronic properties of amorphous Al(2)O(3), in a system consisting of a supercell of 80 atoms, are reported. A detailed analysis of the interatomic correlations allows us to conclude that the short-range order is mainly composed of AlO(4) tetrahedra, but, in contrast with previous results, also an important number of AlO(6) octahedra and AlO(5) units are present. The vibrational density of states presents two frequency bands, related to bond-bending and bond-stretching modes. It also shows other recognizable features present in similar amorphous oxides. We also present the calculation of elastic properties (bulk modulus and shear modulus). The calculated electronic structure of the material, including total and partial electronic density of states, charge distribution, electron localization function and the ionicity for each species, gives evidence of correlation between the ionicity and the coordination for each Al atom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/23/49/495401 | DOI Listing |
Polymers (Basel)
January 2025
Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania.
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Polymers, Composites and Biomaterials, National Research Council, via Previati n.1/E, 23900 Lecco, Italy.
This study explores the impact of blending polyethylene terephthalate (PET) with polybutylene terephthalate (PBT) on the thermal, structural, and mechanical properties of 3D-printed materials. Comprehensive analyses, including Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and mechanical testing, were conducted to assess the influence of blend composition. FT-IR confirmed that PET and PBT blend physically without transesterification, while TGA showed enhanced thermal stability with increasing PET content.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), FEUP Campus, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal.
The present work constitutes the initial experimental effort to characterise the dynamic tensile performance of basalt fibre grids employed in TRM systems. The tensile behaviour of a bi-directional basalt fibre grid was explored using a high-speed servo-hydraulic testing machine with specialised grips. Deformation and failure modes were captured using a high-speed camera.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia.
One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!