Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The proliferation of pulmonary artery smooth muscle cells (PASMCs) plays a role in pulmonary vascular remodeling (PVR). Recently, it was shown that vascular smooth muscular cell phenotype modulation is important for their proliferation in other diseases. However, little is known about the role of human PASMC phenotype modulation in the proliferation induced by hypoxia and its molecular mechanism during PVR. In this study, we found using primary cultured human PASMCs that hypoxia suppressed the expression of endogenous PKGIα, which was reversed by transfection with a recombinant adenovirus containing the full-length cDNA of PKGIα (Ad-PKGIα). Ad-PKGIα transfection significantly attenuated the hypoxia-induced downregulation of the expression of smooth muscle α-actin (SM-α-actin), myosin heavy chain (MHC) and calponin in PASMCs, indicating that hypoxia-induced phenotype modulation was blocked. Furthermore, flow cytometry and (3)H-TdR incorporation demonstrated that hypoxia-induced PASMC proliferation was suppressed by upregulation of PKGIα. These results suggest that enhanced PKGIα expression inhibited hypoxia-induced PASMC phenotype modulation and that it could reverse the proliferation of PASMCs significantly. Moreover, our previous work has demonstrated that Akt protein is activated in the process of hypoxia-induced proliferation of human PASMCs. Interestingly, we found that Akt was not activated by hypoxia when PASMC phenotype modulation was blocked by Ad-PKGIα. This result suggests that blocking phenotype modulation might be a key up-stream regulatory target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2011.11.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!