The D₂ dopamine receptor and locomotor hyperactivity following bilateral vestibular deafferentation in the rat.

Behav Brain Res

Department of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago Medical School, Dunedin, New Zealand.

Published: February 2012

Rats and mice with bilateral vestibular loss exhibit dramatic locomotor hyperactivity and circling behaviours, which to date cannot be explained. Dysfunction of the striatal dopaminergic system is responsible for a number of known movement disorders and the D(2) dopamine receptor is known to be implicated. Therefore, it is possible that changes in striatal function are responsible for locomotor hyperactivity and circling following bilateral vestibular lesions. The aim of this study was to investigate the effects of the D(2) receptor antagonist, eticlopride (0.02, 0.04 and 0.06mg/kg; s.c.), on locomotor behaviour in rats at 5 months following bilateral vestibular deafferentation (BVD), using an open field maze. The levels of the D(2) receptor protein in the striatum were measured at 1 and 6 months post-BVD using western blotting. BVD rats exhibited locomotor hyperactivity and circling, which eticlopride did not eliminate. However, BVD rats did exhibit a decreased response to the inhibitory effect of eticlopride compared to sham controls at the 0.02 mg/kg dose. There were no changes in the amount of the D(2) receptor in the striatum at 1 or 6 months post-BVD; however, D(2) receptor levels were significantly higher on the right side than the left in both sham and BVD animals. These results suggest that locomotor hyperactivity and circling behaviours following BVD are not due simply to changes in D(2) receptor protein expression in the striatum and that other neurophysiological changes in the brain account for these behaviours following BVD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2011.11.006DOI Listing

Publication Analysis

Top Keywords

locomotor hyperactivity
20
bilateral vestibular
16
hyperactivity circling
16
dopamine receptor
8
vestibular deafferentation
8
circling behaviours
8
receptor protein
8
months post-bvd
8
bvd rats
8
behaviours bvd
8

Similar Publications

Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M and M receptors. M receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M receptors on cholinergic neurons has been less explored.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how chronic exposure to digoxin affects locomotor activity and brain chemistry in zebrafish.
  • Zebrafish were housed in groups and exposed to 2 μM of digoxin for a week, resulting in increased hyperactivity and decreased anxiety in a novel environment test.
  • The findings reveal significant changes in brain monoamine levels, indicating that cardiotonic steroids like digoxin can influence neurotransmission, which might have implications for neuropsychiatric conditions.
View Article and Find Full Text PDF

Background: Fluoxetine is widely used as a first-line antidepressant. However, the molecular mechanisms for its antidepressant effects are still not fully understood. Hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis is a core pathogenic mechanism contributing to depression, and fluoxetine treatment prevents this dysfunction.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is characterized by deficits in communication, social interaction, and repetitive and stereotyped behaviors, with no specific drug therapy available. Studies have found that cannabidiol (CBD) can improve hyperactive and cognitive symptoms in children with ASD. However, little is known about the effect of CBD in combination with other medications, such as risperidone (RISP).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with closed head injury (CHI) being one of the most common forms of TBI. Preclinical modeling of TBI is challenging due to confounding factors like craniectomy and poorly controlled injury severity. This study proposes a non-invasive CHI model using directed shockwaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!