Sulfur is an essential element to all kingdoms of life and is used in essential cellular processes including the synthesis of sulfur-containing amino acids, maintenance of cellular redox states, and incorporation into various metabolites. Inorganic sulfate, the most abundant source of environmental sulfur, is metabolized into two commonly formed nucleotide precursors: adenosine 5’-phosphosulfate (APS) and 3’-phosphoadenosine 5’-phosphosulfate (PAPS). Donation of activated sulfur occurs through a broad range of enzymatic reactions many of which consume PAPS thereby producing 3’-phosphoadenosine 5’-phosphate (PAP). Two classes of 3’-nucleotide phosphatases then hydrolyze PAP into 5’-AMP: one is evolutionarily conserved from bacteria to man and localizes to the cytoplasmic compartment, while the other is restricted to a subset of eukaryotes and is active within the Golgi lumen. Interestingly, both classes of 3’-nucleotidase are members of a structurally conserved family of lithium-inhibited phosphatases that are targets of the drug in a variety of organisms. In this review we provide an overview of sulfur assimilation and the broad regulatory roles that 3’-nucleotidases play in processes ranging from halotolerance to glycosaminoglycan sulfation. In addition, we discuss recent plant and animal studies that emphasize roles for 3’-nucleotidase function in developmental biology, physiology, and in a rare subset of human patients with skeletal abnormalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845023 | PMC |
http://dx.doi.org/10.1016/j.advenzreg.2011.11.002 | DOI Listing |
Kidney360
January 2025
Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
Background: Epidemiological associations between kidney stone disease (KSD) and gastrointestinal disorders have been reported, and intestinal homeostasis plays a critical role in stone formation. However, the underlying intrinsic link is not adequately understood. This study aims to investigate the genetic associations between these two types of diseases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.
Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!