Identification of protein nitrosothiols using phosphine-mediated selective reduction.

Nitric Oxide

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.

Published: January 2012

Regulation of protein function by S-nitrosation of critical cysteines is known to be an important mechanism for nitric oxide signaling. Evidence for this comes from several different experimental approaches including the ascorbate-based biotin switch method. However technical problems with specificity and sensitivity of ascorbate reduction of S-nitrosothiols limit its usefulness and reliability. In the current study we report the use of triphenylphosphine ester derivatives to selectively reduce SNO bonds in proteins. After triphenylphosphine ester reduction, thiols were tagged with biotin or fluorescently labeled maleimide reagents. Importantly we demonstrate that these compounds are specific reductants of SNO in complex biological samples and do not reduce protein disulfides or protein thiols modified by hydrogen peroxide. Reduction proceeds efficiently in cell extracts and in whole fixed cells. Application of this approach allowed us to demonstrate S-nitrosation of specific cellular proteins, label S-nitrosoproteins in whole fixed cells (especially the nuclear compartment) and demonstrate S-nitrosoprotein formation in cells expressing inducible nitric oxide synthase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752596PMC
http://dx.doi.org/10.1016/j.niox.2011.11.001DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
triphenylphosphine ester
8
fixed cells
8
identification protein
4
protein nitrosothiols
4
nitrosothiols phosphine-mediated
4
phosphine-mediated selective
4
reduction
4
selective reduction
4
reduction regulation
4

Similar Publications

Ethnopharmacological Relevance: As digestive health issues rise and interest in natural therapies grows, traditional herbs like Cassia Seed are gaining attention for their antioxidant, laxative, and digestive benefits.

Aim Of The Study: This study aimed to optimize the fermentation conditions of Cassia seed using microbial technology to enhance the content of anthraquinone compounds, thereby augmenting its pharmacological effects, particularly in promoting intestinal peristalsis and alleviating constipation.

Materials And Methods: Fermentation of Cassia Seed was conducted under controlled microbial conditions.

View Article and Find Full Text PDF

Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.

View Article and Find Full Text PDF

Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!